Disputas Matemáticas En El Siglo XVI Translate this page niccolo fontana (tartaglia) 1499-1557. niccolo fontana conocido comotartaglia, nació en Brescia República de Venecia , en 1499 http://es.geocities.com/clapellini/disputas_matematicas.htm
Extractions: Erase el siglo XVI, en la Italia renacentista, tres notable matemáticos conocidos como Del Ferro, Tartaglia y Cardano, que trabajaban arduamente en busca de encontrar un método práctico para resolver una ecuación matemática, conocida como de tercer grado. Desde la época de los babilonios, 2500 a.d.C.,cuando estos ya conocían la solución de las ecuaciones de segundo grado, (para aplicarlo a sus construcciones) y hasta esa fecha no hubo avances significativos con respecto a este tema. Unos cuántos años antes los famosos matemáticos medievales Fibonacci y Luca Pacioli, habían tratado someramente estos problemas, pero sólo resolviendo algunos casos particulares, e inclusive sin llegar a una demostración racional de tales soluciones. Sería Scipione del Ferro, hijo de un imprentero de Bolonia, el primero en estudiar con un método ortodoxo, la obtención de las raíces (soluciones) de estas funciones matemáticas. Más tarde otras grandes figuras continuarian con estos trabajos, pero sin antes, atravesar un dificil camino de encuentros violentos, dramáticos y deshonestos, por el afán de lograr la primacía en la concrención de sus búsqueda. A través de sus biografía se reflejará esta historia de tristes disputas, y que muestra también la pasión que dominaba a estos genios de los números, que muchas veces viviendo en un ámbito de miserias humanas y materiales , no se dejaban vencer por la adversidad, y siempre se esforzaban para llegar a conocer la verdad de estos dificultosos problemas.
Curios8 Translate this page el que está asociado · niccolo fontana más conocido como tartaglia, nació enBrescia en el año 1.499, y murió en Venecia el 13 de diciembre de 1.557. http://www.xtec.es/~bfiguera/curioso8.html
Extractions: - Bien, como las iba diciendo, u; u u; u dos u; u tres tres u; ... algunos de ustedes ya se habrán dado cuenta que no se trata de un tartajas sino de Tartaglia, más concretamente del archiconocido triángulo de Tartaglia, atribuido también a Pascal o, en países asiáticos, a Yang Hui. Sin duda, se trata de una de las joyas de la matemática, datado durante el Renacimiento en Europa, con el que quería comenzar esta exposición ...
Curios8 amb el que està associat · niccolo fontana més conegut com tartaglia, va néixera Brescia l any 1.499, i va morir a Venècia el 13 de desembre de 1.557. http://www.xtec.es/~bfiguera/curios8.html
Extractions: Era fill dun insigne magistrat i estudiós de problemes físics i matemàtics, va rebre la seva primera formació del seu pare. El 1631 es traslladen a París i freqüentaren el cercle dintel·lectuals organitzat per Mersenne. Aviat es va distingir per les seves investigacions en geometria i física. Als 15 anys publicà "Assaig sobre les còniques".
List Of People By Name: Ta-Tb Pole; tartaglia, niccolo fontana, (15001557), Italian mathematician;Tartikoff, Brandon, (1949-1997), television producer. Tartini http://www.fact-index.com/l/li/list_of_people_by_name__ta_tb.html
Extractions: Main Page See live article Alphabetical index List of people by name A B C ... S T U V W X ... Z Ta-Tb Tc-Td Te Tf-Th Ti ... Tz Tabor, June, musician Tabori, George, dramatist, author Tacer, Ales, poet Tacitus, Publius (or Gaius) Cornelius , (AD 56-120), . Roman historian, ethnologist Tacitus, M. Claudius , (200 AD-276 AD), Roman Emperor Tacuma, Jamaaladeen , (born 1957), jazz musician Taft, Robert Alphonso Senator from Ohio Taft, William Howard President of the United States Chief Justice of the United States Taggard, Geneviere, (Calling Western Union) Tagle, Francisco Ruiz, president Taglioni, Fabio Italian motorcycle engineer Tagore, Rabindranath , (1861-1941), poet Tailleferre, Germaine , (1892-1983), French composer Taimanov, Mark, chess player Taimur Bin Faisal, (1913-1932), Oman sultan Taira no Kiyomori , (1118-1181), samurai warlord Taisho, emperor of Japan Taisuke, Itagaki , Japanese liberal activist Tait, Archibald Campbell , (1811-1882), Archbishop of Canterbury Takagi, Teiji , (1875-1960), mathematician Takakura, emperor of Japan Takaloo, world ranked boxer Takamine, Jokichi
Complex Analysis Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartaglia the stammerer - because of a speaking disorder http://math.fullerton.edu/mathews/c2000/c01/Links/c01_lnk_3.html
Extractions: Section 1.1 The Origin of Complex Numbers Complex analysis can roughly be thought of as that subject which applies the ideas of calculus to the imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about them in high school with introductory remarks from their teachers along the following lines: "We can't take the square root of a negative number. But, let's pretend we can - and since these numbers are really imaginary, it will be convenient notationally to set ." Rules are then learned for doing arithmetic with these numbers. The rules make sense. If , it stands to reason that . On the other hand, it is not uncommon for students to wonder all along whether they are really doing magic rather than mathematics. If you ever felt that way, congratulate yourself! You're in the company of some of the great mathematicians from the sixteenth through the nineteenth centuries. They too were perplexed with the notion of roots of negative numbers. The purpose of this section is to highlight some of the episodes in what turns out to be va very colorful history of how imaginary numbers were introduced, investigated, avoided, mocked, and eventually accepted by the mathematical community. We intend to show you that, contrary to popular belief, there is really nothing imaginary about "imaginary numbers" at all. In a metaphysical sense, they are just as real as are "real numbers."
Complex Analysis Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartagliathe stammerer-because of a speaking disorder http://math.fullerton.edu/mathews/c2002/ca0101.html
Extractions: (c) John H. Mathews, and ... COMPLEX NUMBERS Section 1.1 The Origin of Complex Numbers Complex analysis can roughly be thought of as that subject which applies the ideas of calculus to imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about them in high school with introductory remarks from their teachers along the following lines: "We can't take the square root of a negative number. But, let's pretend we can-and since these numbers are really imaginary , it will be convenient notationally to set ." Rules are then learned for doing arithmetic with these numbers. The rules make sense. If , it stands to reason that . On the other hand, it is not uncommon for students to wonder all along whether they are really doing magic rather than mathematics. If you ever felt that way, congratulate yourself! You're in the company of some of the great mathematicians from the sixteenth through the nineteenth centuries. They, too, were perplexed with the notion of roots of negative numbers. The purpose of this section is to highlight some of the episodes in what turns out to be a very colorful history of how imaginary numbers were introduced, investigated, avoided, mocked, and-eventually-accepted by the mathematical community. We intend to show you that, contrary to popular belief, there is really nothing imaginary about "imaginary numbers'' at all. In a metaphysical sense, they are just as real as are "real numbers.''
Extractions: Retratos INICIO EPSILONES Saludo BESTIARIO Mapa del sitio ... Pierre de Fermat NOVEDAD Fibonacci (Leonardo de Pisa) (ca. 1180 - 1250) Gauss, Carl Friedrich Leonardo da Vinci Moebius, A. F. Neumann, John von ... Pacioli, Luca (ca. 580 a.n.e.-ca. 500) Ramanujan, Srinivara Russell, Bertrand Tartaglia, Niccolo Fontana (ca. 1500-1557) Turing, Alan (ca. 495 a.n.e.-ca. 430) Pierre de Fermat (1601-1665) Newton Descartes la Pascal probabilidad Fue uno de los primeros en establecer principios variacionales (dijo de la naturaleza que “siempre sigue el camino más corto"), gracias a los cuales obtuvo las leyes de la reflexión y la refracción. Pierre de Fermat (62 Kb). Bertrand Russell (1872-1970) Entre sus aportaciones a la historia del pensamiento destacan: Desarrollo del logicismo , programa propuesto por Frege Paradoja de Russell. Fenomenalismo Dos fueron los grandes objetivos de Russell durante su vida: luchar contra la estupidez y por la felicidad. El Papa es usted.
HighBeam Research: ELibrary Search: Results be seen in churches in Ferrara, including the church of S niccolo, for which fontana,Niccol ograve; Italian mathematician, nicknamed tartaglia. http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_dictiona
Ballistics O Connor, John J and Robinson, Edmund F. Nicolo fontana tartaglia. http//www Westfall,Richard S. tartaglia Tartaleo, Tartaia, niccolo. http//es http://tomacorp.com/ballistics/ballistics.html
Extractions: Ballistics Spud Gun A spud gun is a form of potato shooter that is made of ABS pipe. Do not use PVC pipe! . Do not use DWV pipe (drain, waste, vent) or cellulose pipe marked NOT FOR PRESSURE. This means DO NOT USE THEM OR PRESSURIZE THEM AT ALL. These pipes can tolerate no pressures and will explode if pressurized, causing great harm or death. A friend of a guy named John Rich made the designs of the spud gun. Bob Simon put up a website called " Backyard Ballistics " in 1995 in the city of Houston, Texas. He probably did this for the purposes of fun. This is just the sort of thing that you should expect from a Texan! Note: I am about to tell you how to make one of these things. Do not use this for any purpose other than fun. Do not point this at anyone or anything. Do not even build one. You could become seriously injured or killed!) How to make a spud gun Materials 1 10 foot 3 inch diameter schedule 40 ABS pipe 110 foot 2 inch diameter schedule 40 ABS pipe 1 3 to 2 inch reducing bushing 1 3 inch coupling 1 3 inch threaded (one side) coupling 1 3 inch threaded end-cap One can ABS solvent-weld pipe glue.
Histoire34 Translate this page tartaglia. (Italien,1499-1557). niccolo fontana ou tartaglia, filsdun humble postier est né à Brescia en 1499. Il fut presque http://maurice.bichaoui.free.fr/Histoire34.htm
Extractions: T artaglia (Italien,1499-1557) Niccolo Fontana ou Tartaglia, fils dun humble postier est né à Brescia en Il fut presque tué à son adolescence quand en , les Français ont capturé sa ville natale et lui ont donné un coup dépée. Les troupes françaises étaient menées par le terrible Gaston de Foix, surnommé "Foudre d'Italie". Le jeune homme de 13 ans avait reçu un horrible coup de sabre à la face et il était laissé pour mort. Les soins de sa mère firent que le jeune a survécu mais plus tard, Niccolo portait toujours la barbe pour camoufler ses cicatrices et il parlait avec difficultés doù son surnom Tartaglia ou le bègue. Le père de Niccolo Fontana avait engagé un professeur pour instruire son fils de six ans. Après la mort de son père, celui-ci arrêta les cours, alors qu'il ne connaissait qu'un tiers de l'alphabet (de A à I). Il poursuivit seul son apprentissage. Tartaglia était un autodidacte en mathématiques mais avait d'extraordinaires possibilités ; il était capable de gagner sa vie en enseignant à Vérone et Venise. En temps que simple professeur de mathématiques à Venise, Tartaglia a acquis peu à peu une réputation de futur mathématicien en participant à de nombreux débats.
Matematica - Articoli - Invito A ... Translate this page competizione. niccolo fontana tartaglia. Ad esempio Alice e Bob hannolitigato e si dividono tutti i beni acquisiti in comune. Per http://matematica.uni-bocconi.it/betti/crittografia.htm
Extractions: Prima che una disciplina scientifica, la Crittografia era una pratica, un insieme di regole, di metodi, di strumenti. Era diventata quasi un'arte: l'arte di scambiarsi i messaggi senza farne capire il reale contenuto, anche se venivano intercettati. Una disciplina dallo statuto ambiguo, al limite della magia e dell'esoterismo. In questo contesto, Alice e Bob non sono ancora nati. Si ha a che fare con problemi di spionaggio, di nemici desiderosi di venire a conoscenza delle informazioni che scambiamo con i nostri alleati, per servirsene a nostro danno.
4Reference || Niccolo Fontana Tartaglia Read about niccolo fontana tartaglia and thousands of other subjectsat 4Reference.net. niccolo fontana tartaglia. niccolo fontana http://www.4reference.net/encyclopedias/wikipedia/Niccolo_Fontana_Tartaglia.html
Extractions: Front Page Encyclopedias Dictionaries Almanacs ... Quotes Niccolo Fontana Tartaglia Niccolo Fontana Tartaglia or December 13 ) was a mathematician, an engineer (designing fortifications), surveyor (topography w/r best means of defense or offense) and bookkeeper from the then Republic of Venice (now Italy ). He published many books, including the first Italian translations of Archimedes and Euclid , and an acclaimed compilation of mathematics. Tartaglia was the first to apply mathematics to the investigation of the paths of cannonballs; his work was later validated by Galileo 's studies on falling bodies. There is a story that Tartaglia learned only half the alphabet from a private tutor before funds ran out, and he had to learn the rest for himself. Be that as it may, he was essentially self-taught. He and his contermporaries, working outside the academies, were responsible for the spread of classic works in modern languages among the educated middle class. His work on Euclid in was especially significant. For two centuries Euclid had been taught from two Latin translations taken from an Arabic source; these contained errors in Book V, the Eudoxian theory of proportion, which rendered it unusable. Tartaglia's edition was based on Zamberti's Latin translation of an uncorrupted Greek text, and rendered Book V correctly. He also wrote the first modern and useful commentary on the theory. Later, the theory was an essential tool for Galileo, just as it had been for
December 13 - Today In Science History His proper name was niccolo fontana although he is always known by his nickname,tartaglia, which means the stammerer. When the French sacked Brescia in 1512 http://www.todayinsci.com/12/12_13.htm
Extractions: Philip Warren Anderson is an American physicist who (with John H. Van Vleck and Sir Nevill F. Mott) received the 1977 Nobel Prize for Physics for his research on semiconductors, superconductivity, and magnetism. He made contributions to the study of solid-state physics, and research on molecular interactions has been facilitated by his work on the spectroscopy of gases. He conceived a model (known as the Anderson model) to describe what happens when an impurity atom is present in a metal. He also investigated magnetism and superconductivity, and his work is of fundamental importance for modern solid-state electronics, making possible the development of inexpensive electronic switching and memory devices in computers. John Henry Patterson American manufacturer who founded NCR (National Cash Register Co.) and helped popularize the modern cash register by means of aggressive and innovative sales techniques. In the 1870s, when he and his brother Frank established a successful business selling coal and miner's supplies, unrecorded sales were a problem. After reading a description of the cash register designed by James Ritty and sold by the National Manufacturing Company in Dayton, John ordered two, sight unseen. In six months they reduced his debt from $16,000 to $3,000 and the books showed a profit of $5,000. These modern machines had solved the old problems of disorganization and dishonesty. Patterson "was so impressed that he bought the company."
Japanese Syllabaries (Ü\¹) 1782) (Jean Le Rond d Alambert 1717?1783) (niccolo fontana tartaglia 14991557)(Nicolo fontana) (Thales http://www5f.biglobe.ne.jp/~mathlife/html/jpsyllabary.htm
A Look To The Past niccolo fontana (tartaglia) (15001557) claimed to be able to solve cubic equationsof the form x3+ mx2 = n. However, he apparently did not know how to solve http://ued.uniandes.edu.co/servidor/em/recinf/tg18/Vizmanos/Vizmanos-2.html
Extractions: Will elementary algebra disappear with the use of new graphing calculators?. What do we understand elementary algebra to be? Elementary algebra is the language with which we communicate the majority of mathematics. Thanks to algebra we can work with concepts at an abstract level and then apply them. Elementary algebra begins as a generalization of arithmetic and then focuses on its own structure and greater logical coherence. From there comes the importance of the various uses of algebraic symbols. When we write A + B, we can be indicating the sum of two natural numbers, the sum of two algebraic expressions, or even the sum of two matrices. Thus there is, at first, representations and symbolism, and later the development of algorithms and procedures to work formally with algebraic expressions. But what we today understand to be algebra has been the fruit of the efforts of many generations that have been contributing their grains of sand in constructing this magnificent building. It seems that the Egyptians already knew methods for solving first degree equations. In the
Bloomsbury.com - Research Centre A method of solving cubics (equations of the form ax 3 + bx 2 + cx + d = 0) wasdiscovered (probably rediscovered) by tartaglia (niccolo, fontana; (1500?1557 http://www.bloomsbury.com/ARC/detail.asp?entryid=102120&bid=2
Extractions: Mathematical Applications MATH-117 This course is for students who do not intend to take trigonometry and calculus. It is intended to satisfy the general university competency requirement in mathematics. Topics may include by are not limited to: problem solving strategies, logic, consumer mathematics, probability and statistics, geometry, and mathematics and art. This course does satisfy the mathematics requirement of the Associate of Arts or Associate of Science degree. The student will be required to complete a mathematical research paper/project This paper must be a college level paper , at least 4 to 5 pages in length. It must be documented and referenced with at least 3 sources (more than half of the sources must be non-Internet sources). You will be required to give a 10 - 15 minute presentation on this research Following is a list of possible topics for the paper/project. Include are some interesting math websites which can help you decide which topic is of interest to you. General Sites these sites have many topics The History of Mathematics University of South Australia Ask Dr. Math