À§´ëÇѼöÇÐÀÚ ¸ñ·Ï Aug 1856 in Wiesbaden, Germany Died 21 June 1929 in Zurich, Switzerland rudolff,christoff rudolff Born 1499 in Jauer, Silesia (now Jawor, Poland) Died 1545 http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=R
Rudersport Bei ZuStart.de - ZU® Translate this page Rudersport ABCDEFGHIJKLMNOPQRSTU VWXYZ Rottmeyer, Franz Robert - rudolff, christoff(11/25) Rudenkirtag Rüdiger von Bechelaren Rudersport Rudersport, kam von http://zusport.de/?keyword=Rudersport&page=2&parent=2066
Earliest Uses Of Symbols For Fractions And Decimals In 1530, christoff rudolff (1499?1545?) used a vertical bar exactly as we use adecimal point today in setting up a compound interest table in the Exempel B http://mail.mcjh.kl.edu.tw/~chenkwn/mathword/fractions.html
Extractions: Last revision: June 19, 1999 Earliest notations for fractions. Information on Babylonian, Egyptian, and Greek fractions will be added to this page soon. Ordinary fractions without the horizontal bar. According to Smith (vol. 2, page 215), it is probable that our method of writing common fractions is due essentially to the Hindus, although they did not use the bar. Brahmagupta (c. 628) and Bhaskara (c. 1150) wrote fractions as we do today but without the bar. The horizontal fraction bar was introduced by the Arabs. "The Arabs at first copied the Hindu notation, but later improved on it by inserting a horizontal bar between the two numbers" (Burton). Several sources attribute the horizontal fraction bar to al-Hassar around 1200. When Rabbi ben Ezra (c. 1140) adopted the Moorish forms he generally omitted the bar. Fibonacci (c.1175-1250) was the first European mathematician to use the fraction bar as it is used today. He followed the Arab practice of placing the fraction to the left of the integer (Cajori vol. 1, page 311). The bar is generally found in Latin manuscripts of the late Middle Ages, but when printing was introduced it was frequently omitted, doubtless owing to typographical difficulties. This inference is confirmed by such books as Rudolff's
Earliest Uses Of Symbols For Variables christoff rudolff used the letters a, c, and d to represent numbers, although notin algebraic equations, in Behend vnnd Hubsch Rechnung (1525) (Cajori vol. http://mail.mcjh.kl.edu.tw/~chenkwn/mathword/variables.html
Extractions: Last revision: May 29, 1999 Greek letters. The use of letters to represent general numbers goes back to Greek antiquity. Aristotle frequently used single capital letters or two letters for the designation of magnitude or number (Cajori vol. 2, page 1). Diophantus (fl. about 250-275) used a Greek letter with an accent to represent an unknown. G. H. F. Nesselmann takes this symbol to be the final sigma and remarks that probably its selection was prompted by the fact that it was the only letter in the Greek alphabet which was not used in writing numbers. However, differing opinions exist (Cajori vol. 1, page 71). In 1463, Benedetto of Florence used the Greek letter rho for an unknown in Trattato di praticha d'arismetrica. (Franci and Rigatelli, p. 314) Roman letters. In Leonardo of Pisa's Liber abbaci (1202) the representation of given numbers by small letters is found (Cajori vol. 2, page 2). Christoff Rudolff used the letters a, c, and d to represent numbers, although not in algebraic equations, in Behend vnnd Hubsch Rechnung (1525) (Cajori vol. 1, page 136).
Untitled Document Translate this page Jacob Köbel 1514. Ain New Gordnet Rechen Biechlin 1514. christoff rudolff 1525.Coss 1525. Ayn New Kunstlich Bulch 1518. christoff rudolff 1525. Die Regel de Tri. http://www.prandiano.com.br/html/m_arq2.htm
Algebra In The Renaissance, Part 1 of Pisa, Luca Pacioli, the Summa de Arithmetica, Geometrica, Propotioni et Proportionalita, Nicolas Chuquet, the Triparty, christoff rudolff, Michael Stifel http://public.csusm.edu/DJBarskyWebs/330CollageOct15.html
Extractions: Student lecturer Jennifer Hineline started today's discussion with an overview of the social climate of the Renaissance era, specifically the economic situation. Instead of traveling to buy and returning home to sell, merchants would hire others to do the traveling and buying. This complicated the accounting process, bringing about a need for mathematicians as accountants. Ms. Hineline also made a connection between the ease with which Arabic numerals can be altered and the practice of writing out numbers in other ways, which is still in practice today in the writing of checks. After a brief discussion of some of the symbolic notation used by some Italian algebraists, Ms. Hineline explained Paolo Gerardi's algorithm for adding algebraic fractions. This was very similar to what we teach in beginning algebra, except that instead of necessarily finding the lowest common denominator, Gerardi would simply use the product of the denominators of all the addends. Ms. Hineline then discussed Maestro Dardi and his method of solving cubic equations. Unfortunately, Dardi's method only works when certain relationships exist between the coefficients. Ms. Hineline proceeded to introduce a series of mathematicians from France, Germany, England and Portugal, paying special attention along the way to Nicolas Chuquet from France. Chuquet theorized that given two ratios, a/b and c/d, the ratio (a+c)/(b+d) would fall between the two original ratios. Ms. Hineline demonstrated Chuquet's method of estimating square roots using his ratio theory. Although he never used the word limit, Chuquet was using a variation of the squeeze theorem and a limiting process to find square roots. Chuquet realized that square roots that are not integers are irrational, and he acknowledged that his method would never allow him to find a square root exactly. But by taking this method far enough, we can come arbitrarily close to the actual root, and we can estimate a root to any desired degree of accuracy.
Mathematik Facharbeit: Renaissance - Die Rechenmeister Translate this page Die bekanntesten und bedeutendsten deutschen Rechenmeister sind Johannes Widmann(um 1490), Adam Ries (um 1520), christoff rudolff (um 1520) und Michael Stifel http://members.tripod.com/sfabel/mathematik/epochen_ren_re.html
Extractions: Nieder-Adersbach (Dolní Adrpach) Das Schloss in Nieder-Adersbach Der Umlaufhof Bewohner der Herrschaft Adersbach im Verzeichnis der Untertanen nach dem Glauben 1651 Besitzer der Herrschaft Adersbach im Jahr 1651 war der spanische Oberstleutnant Don Luis Caraffa. Katholische, auswärtige und freie Bewohner werden erwähnt. Alle anderen gehörten zu dieser Zeit nicht dem katholischen Glauben an, und sind der Herrschaft untertänig. In diesem Verzeichnis wurden Kinder nicht berücksichtigt, die jünger als 9 Jahre waren. Johannes Krebs kath., frei, vom Gestifft Grusau alldort unerthenig, Schulmeister, 49 Jahre; Juditta kath. frei, sein Weyb, 36 Jahre; seyn Sohn Daniel kath. frei, 12 Jahre; Dorothea kath, seine Hir Magd, 31 Jahre untertänig; Martin Steiner, frei, Amptman, 48 Jahre, Ursula sein Weyb, 52 Jahre; Sohn Johann Martin 18 Jahre; Sohn Friedrich 16 Jahre; Tochter Catharina Polixena 13 Jahre; Magt Madalena Bürgerliche, kath., frei, 18 Jahre; Casper Robe , Schaffer im Hofe, 60 Jahre; Ludmilla sein Weyb, 40 Jahre; Sohn Casper 20 Jahre; Zwillinge Hanß und Anna 13 Jahre; Magt Elisabeth N. 26 Jahre;
Pink Plaisance, 1732 Stephen (X) Long. Christian (O) Strom. rudolff Christen. Peter (PB) Biker. AndresFlickiger. Jacob (X) Swisser. christoff Albrecht Lang. Johann Wilhelm Straub. http://www.genealogygoldmine.com/martin/shiplists/1732Plaisance.html
Extractions: Passengers abroad the Pink Plaisance, which landed at the port of Philadelphia; September 21, 1732 List A: A list of the Palatine men on board the Pink Plaisance above the age of 16 years, as signed on their own (or with help, if illiterate). John Parrett, Master from Rotterdam [Netherlands], but last from Cowes, [England] qualified September 21, 1732. At the Courthouse Present: The Honorable the Governor, S. Hasell, Esquire, Mayor The foregoing list [list A] was sworn to by the Master. R. Charles, Cl. Con. "At the Courthouse aforesaid, September 21, 1732. Seventy two Palatines, who with their families, making in all One hundred eighty-eight Persons, were imported in the Pink Plaisance, John Paret, Mr., from Rotterdam, but last from Cowes as by Clearance thence." From the minutes of the Provincal Council, printed in Colonial Records, Vol. III, p. 454. List B: Palatines imported in the Pink Plaisance , John Parrett, Master from Rotterdam, but last from Cowes, p. Clearance thence. Qualified September 21, 1732. List C: Palatines imported in the Pink Plaisance
Flas Matemático Translate this page radix. El símbolo de la raíz, aparece por primera vez en el librode álgebra publicado en alemán en 1525, de christoff rudolff. http://www.geocities.com/Athens/Acropolis/4329/flas.htm
Extractions: Los Elementos indios Los Parece ser que las letras de cambio Cuando decimos que un objeto de oro tiene 16 quilates , significa que de 24 partes del objeto, 16 son de oro. Sirve para medir la ley; en este caso el objeto de oro tiene una ley de 16 quilates. El origen de los signos + y - El signo = para las igualdades fue utilizado por primera vez por el inglés Robert Recorbe en 1557 apareciendo por primera vez en su libro "El aguzador del ingenio", siendo el primer tratado inglés de álgebra. Según el autor, eligió ese símbolo porque dos cosas no pueden ser más iguales que dos rectas paralelas.
Historia De La Matemática Translate this page cúbico dado. 1525, El matemático alemán christoff rudolff empleael símbolo actual de la raíz cuadrada. 1545, Gerolamo Cardano http://www.sectormatematica.cl/historia.htm
Extractions: Excel ... Sistema de numeración maya 3000 A.C.- 2500 A.C. Los textos de matemática más antiguos que se poseen proceden de Mesopotamia, algunos textos cuneiformes tienen más de 5000 años de edad. Se inventa en China el ábaco, primer instrumento mecánico para calcular. Se inventan las tablas de multiplicar y se desarrolla el cálculo de áreas. 1600 A.C aprox. El Papiro de Rhind , es el principal texto matemático egipcio, fué escrito por un escriba bajo el reinado del rey hicso Ekenenre Apopi y contiene lo esencial del saber matemático de los egipcios. Entre estos, proporciona unas reglas para cálculos de adiciones y sustracciones de fracciones, ecuaciones simples de primer grado, diversos problemas de aritmética, mediciones de superficies y volumenes. entre 600 y 300 A.C.
Simbolos Matematicos Translate this page El símbolo Ö para la raíz, aparece por primera vez en el primer álgebrapublicada en alemán vulgar, en 1525, de christoff rudolff. http://www.terra.es/personal/jftjft/Historia/Simbolos.htm
Extractions: Fecha de última actualización: 21-07-98 Si alguien os pregunta quién utilizó por primera vez un símbolo matemático y no lo sabéis y tenéis que contestar, responded Euler , es muy probable que acertéis. Antiguamente se utilizaban palabras para referirse a los símbolos, por ejemplo para el signo igual se utilizaba aequales, aequantur, o abreviaturas como aeq. El símbolo = aparece por primera vez en The Whetstone of whitte (El aguzador del ingenio) publicada en 1557 por Robert Recorde, que es el primer tratado inglés de álgebra. El autor afirma que eligió ese símbolo porque dos cosas no pueden ser más iguales que dos rectas paralelas. Este símbolo se generalizó hacia finales del siglo XVII; todavía en este siglo Descartes utiliza un signo semejante al símbolo del infinito, probable corrupción de la inicial de la palabra ae qualis (igual en latín). Artis Analyticae Praxis ad aequationes Algebraicas Resolvendas Los símbolos actuales para representar, no igual, no mayor que, no menor que, se deben a
Pythagoras' Constant : $\sqrt{2}$ The history of the famous sign Ö goes back up to 1525 in a treatise named Cosswhere the German mathematician christoff rudolff (14991545) used a similar http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html
Extractions: There are certainly people who regard as something perfectly obvious but jib at . This is because they think they can visualise the former as something in physical space but not the latter. Actually is a much simpler concept. Edward Charles Titchmarsh The constant 2 is famous because it's probably one of the first irrational numbers discovered. According to the Greek philosopher Aristotle (384-322 BC), it was the Pythagoreans around 430 BC who first demonstrated the irrationality of the diagonal of the unit square and this discover was terrible for them because all their system was based on integers and fractions of integers. Later, about 2300 years ago, in Book X of the impressive Elements, Euclid (325-265 BC) showed the irrationality of every nonsquare integer (consult [ ] for an introduction to early Greek Mathematics). This number was also studied by the ancient Babylonians. The history of the famous sign goes back up to 1525 in a treatise named Coss where the German mathematician Christoff Rudolff (1499-1545) used a similar sign to represent square roots.
WisFaq! volgens Euler). De R werd voor het eerst gebruikt door Leonardo vanPisa (1220). Het symbool zelf door christoff rudolff (14991545). http://www.wisfaq.nl/showrecord3.asp?id=16368
La Radicación - Naveguitos Translate this page Un dato interesante Un matemático alemán llamado christoff rudolff fuequien empleó por primera vez el símbolo actual de la raíz cuadrada. http://www.naveguitos.com.ar/comun/v2/vis_17568.asp
ThinkQuest : Library : Mathematics History 1521. His disciple, christoff rudolff used the radical symbol(¡î)including (+), ( in his bool about algebra in 1525. He used http://library.thinkquest.org/22584/emh1400.htm
Extractions: Index Math An extensive history of mathematics is at your fingertips, from Babylonian cuneiforms to advances in Egyptian geometry, from Mayan numbers to contemporary theories of axiomatical mathematics. You will find it all here. Biographical information about a number of important mathematicians is included at this excellent site. Visit Site 1998 ThinkQuest Internet Challenge Languages English Korean Students Hyun-jin Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Kyung-sun Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South So-young Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Coaches Jae-yun Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Jong-hyun Jong-hyun Lee(Seoul Yo Sang), Kwan-ak Gu, Korea, South Dea-won Dea-won Ko (Seoul Yo Sang), Kwan-ak Gu, Korea, South Want to build a ThinkQuest site? The ThinkQuest site above is one of thousands of educational web sites built by students from around the world. Click here to learn how you can build a ThinkQuest site.
Re: Square Root By Antreas P. Hatzipolakis On Mon, 18 Mar 1996 Jim Newman wrote Dear Nxawe, According to Burton, the squareroot sign is traceable to christoff rudolff s Die Coss (1525), where it http://mathforum.org/epigone/math-history-list/dehblumblim/v01540b01ad735b572313
Re: [HM] Irrational Numbers By Albrecht Heeffer Magna ), but acknowledges so. He also cites Pacioli, christoff rudolff,Adam Ries, Pedro Nunez and Johannes Scheubel. He writes that he http://mathforum.org/epigone/historia_matematica/dausmehtu/00f301c4197e$119a38f0
Extractions: Subject: Re: [HM] Irrational numbers Author: albrecht.heeffer@pandora.be Date: http://gallica.bnf.fr/ . He borrowed heavily from Stifel ("Arithmetica Integra") and Cardano ("Ars Magna"), but acknowledges so. He also cites Pacioli, Christoff Rudolff, Adam Ries, Pedro Nunez and Johannes Scheubel. He writes that he learned about the Arithmetica of Diophantus from Scheubel. On page 81, he gives a problem on triangles which leads to an equation with irrational roots, and refers to Stifel for the term 'irrational'. Irrational numbers were often treated in relation to algebra. Some references using the term 'irrational' before Peletier's Algebre ('surd' was a more common word).: - Stifel, Arithmetica Integra, 1545, Book III, Chapter V, p. 246: "de numeris cossicis irrationalibus" - Adam Ries, 1524, "Der irracionaln Zaln", Dresden C 349, f. 136r. - Oresme, Algorismus Proportionum, c.1380, "proportionem irrationalem" Albrecht Heeffer The Math Forum
2 Algebraic Notation Adam Riese (14921559), which promoted Hindu-Arabic numerals and calculation bypen instead of counting with an Abacus, and in christoff rudolff s (1499-1545 http://www.hf.uio.no/filosofi/njpl/vol2no1/history/node2.html
Extractions: Next: 3 Logic and Computation Up: A Brief History of Previous: 1 Introduction Muhammad ibn Musa al-Khwarizmi (780?-847?), who worked at Baghdad's ``House of Wisdom'', is often credited with being the father of algebra. His book ``Al-jabr wa'l muqabalah'', which can be translated as ``restauration and reduction'', gives a straight-forward and elementary exposition of the solution of equations. A typical problem, taken from chapter V, is the division of ten into two parts in such a way that ``the sum of the products obtained by multiplying each part by itself is equal to fifty eight''. The solution, three and seven, is constructed geometrically in quite an elegant fashion. Besides his own methods, al-Khwarizmi uses procedures of Greek origin such as proposition 4 of book II in Euclid's Elements: If a straight line is cut at random, the square on the whole is equal to the squares on the segments and twice the rectangles contained by the segments. Take a look at Figure . Euclid's theorem states that the sum of the shaded squares and the two remaining rectangles is equal to the whole square. In the case of al-Khwarizmi's problem, the whole square has 100 units since the straight line has ten units. The two shaded squares on the segments have fifty-eight units and so al-Khwarizmi concludes that each rectangle amounts to twenty-one units. To complete the solution of the problem, we quote from Rosen's translation of al-Khwarizmi's Algebra: