Institut De France - Recherche Translate this page de Physique générale) LISLET-GEOFFROY (Jean-Baptiste) Académie des Sciences (sectionde Géographie et Navigation) lissajous (jules, Antoine) Académie des http://www.institut-de-france.fr/franqueville/premier_siecle/rech_premier_l.htm
Extractions: Two oscillations one along the x axis and the other along the y axis when added result in a two dimensional motion. The path traced is known as Lissajous figures. The optical production of the curves was first demonstrated in 1857 by Jules Antoine Lissajous (1833-1880). The combination of periodic waves moving back and forth with periodic waves moving up and down create the patterns.
Question Ecila Lissajous Translate this page 3 texte SEIN, le meme merite sur le rapport de jules lissajous pour les perfectionnementsapportes aux century French scientist, jules A. lissajous). http://france.ecila.fr/cgi-bin/SFgate?language=french&text=Lissajous
Extractions: Metric Halo Laboratorys SpectraFoo Visual Audio Monitoring System by J. Arif Verner Imagine what it would be like to look at the music during a mix. Or better yet, to visually dissect the sounds on each track. That is the goal of Metric Halo Laboratorys SpectraFoo Visual Audio Monitoring System. This real-time audio analysis software can analyze up to 24 channels of audio simultaneously. Product Points Metric Halo Laboratorys SpectraFoo Visual Audio Monitoring System Applications: Real-time audio signal analysis Key Features: 10 audio analysis instruments including oscilloscopes, Lissajous phase scopes, balance meters, envelope/power/balance history, time code clock, spectrogram, spectrograph and level meters; SpectraFoo Radical 3 supports the following I/O devices: Digidesign AudioMedia II Digidesign AudioMedia III Digidesign Pro Tools III (SpectraFoo Radical 3 running as a standalone app can use Pro Tools hardware as an I/O device); Digidesign Pro Tools 24 Digidesign Pro Tools Mix Korg 1212 I/O Sonorus STUD/IO Digigram PCXpocket PCMCIA card Macintosh Sound Manager Price: Plus Versatile array of analysis tools Real-time functionality Instantaneous screen updates Inexpensive compared to hardware audio analysis equipment
Lissajous Figure -- Encyclopædia Britannica by the American mathematician Nathaniel Bowditch in 1815, the curves were investigatedindependently by the French mathematician julesAntoine lissajous in 1857 http://www.britannica.com/eb/article?eu=49642
Extractions: Lissajous figures are the interesting and often intricate patterns that are traced out when two mutually perpendicular periodic disturbances occur simultaneously. The resultant motion can be represented by a repetitive pattern on the plane containing the two perpendicular directions. The figures depend on the ratio of the frequencies of the disturbances and the phase difference between them. French physicist Jules A. Lissajous (1822-80) made an extensive study of these motions, and these figures are therefore named for him. Lissajous figures are conveniently displayed on an oscilloscope by applying periodic electrical signals across its vertical and horizontal inputs. S. BHATTACHARYA From Groliers
Unit IV: Simulations This is another Shockwave simulation, with a short article about the discoveryof these wavy figures by jules lissajous and their scientific applications. http://www.phschool.com/science/cpsurf/sound-light/4simu.html
Extractions: Java applets can only be viewed with a Java-enabled browser, such as version 3.0 or higher of or Microsoft Internet Explorer . To view the Shockwave interactions, you must install the Macromedia Shockwave plug-in Note: For better interaction, load Java applets and Shockwave plug-ins before you need them.
Curvay Tutorial Text lissajous figures take their name from jules Antoine lissajous, a French physicistwho studied these patterns in the context of sound waves produced by tuning http://www.spelunkcomputing.com/curvay/tutorial_text.html
Extractions: Curvay draws a rich variety of patterns with a wave-guided pen. In other words, the movement of the pen is controlled by waves. More specifically, it is controlled by two waves, traveling perpendicular to each other. The following paragraphs show how this works and hint at the range of possibilities. For each numbered paragraph, a brief demonstration is available in the box to the right of this text. The demonstrations are triggered by clicking the corresponding paragraph numbers. Imagine a cork bobbing on a wave, not an ocean wave, but an idealized mathematical wave (a sinusoid). As the wave travels by, the horizontal position (x) of the cork does not change but its vertical position (y) does. The cork moves up and down along a vertical line segment. Now imagine the wave traveling along a vertical line (the y-axis) instead of a horizontal one (the x-axis). If you turn your head sideways you can still envision a cork bopping on the wave, this time following a horizontal line segment. It may be easier to dispense with any physical analogy and simply say that this wave drives the horizontal position of a pen. Suppose the two waves discussed thus far are acting simultaneously on a single pen. The wave traveling along the horizontal (x-axis) controls the vertical position (y) of the pen, while that traveling along the vertical (y-axis) controls the horizontal position (x). The pen now traces a diagonal line.
Cet uvre Est Avant Tout Un Pôle De Suggestions Et De Translate this page Simon, marquis de) Lavoisier (Antoine Laurent de) Le Verrier (Urbain Jean Joseph)Legendre Leibniz (Gottfried Wilhelm) lissajous (jules Antoine) Locke (John http://perso.wanadoo.fr/philippelopes/ArborescenceHobbies.htm
Extractions: "Cet œuvre est avant tout un pôle de suggestions et de réflexion. Elle a pour objet d'éveiller chez chacune et chacun d'entre vous, des idées ainsi que des initiatives. Ce n'est que cette volonté acquise, que naîtra en vos âme et conscience le désir d'accéder à l'information suprême."
1822 Translate this page lissajous, jules-Antoine (Versailles 1822-Plombierès-les-Dijon 1880) fisicofrancese, da cui curve di lissajous, dedicatosi a studi di acustica e di ottica http://www.viandante.it/sito24/XIX secolo/1822.php
Extractions: 1839, luglio, viene eletto imperatore; novembre, nella pianura di Gulkané il ministro degli affari esteri Reschid Pascià , legge alla sua presenza e a quella del principe di Joinville, del Mufti, del Divano, degli alti funzionari civili e militari, degli ambasciatori e ministri delle potenze europee, del corpo degli Ulemi, dei Cazi-asker, Cadi e Mollah e dei Patriarchi delle tre comunioni cristiane, un atti-sceriffo, col quale dà nuova forma all'amministrazione; tra le altre cose ordina la sospensione delle ostilità contro Mehemet-Alì
Osiloskop yang dihasilkan adalah berupa gambar yang disebut pola lissajous(diambil dari namaseorang fisikawan asal Perancis jules Antoine lissajous dan diucapkan LiSa http://www.fi.itb.ac.id/~lfd/index.php?aksi=20
Formelspline Tutorial Teil 1 Translate this page Sie wurden nach dem franzosischen Mathematiker jules Antoine lissajous benannt.Mit einem Oszilloskop lassen sich elektrische Signale graphisch darstellen. http://www.3d-meier.de/Tut1/Seite2.html
Extractions: [vor] Diese Figuren lassen sich auch mit Cinema 4D erzeugen. Dazu benutzen wir folgende Formeln. X(t) = 100 * sin(a * t * pi) Y(t) = 100 * cos(b * t * pi) X(t) 100 * sin(1 * t * pi) Y(t) 100 * cos(1 * t * pi) Z(t) t-Min t-Max Dt Welche Figuren bei verschiedenen Frequenzen entstehen ist in Abbildung 2 dargestellt. Abb. 2 [Inhaltsverzeichnis] [vor]
The Sailors Arms lissajous screensaver. lissajous patterns are hardly new. They were first recordedby jules Antoine Lissjous and were used for measuring frequencies. http://jepri.perlmonk.org/programs/liss/
Extractions: Home programs liss Sections Programs Modules Articles Other Highlights PDAV Static Webpages Network Troubleshooting Glade tutorial Other Debian Packages Misc Downloads Lissajous patterns are hardly new. They were first recorded by Jules Antoine Lissjous and were used for measuring frequencies. They are patterns made by plotting one frequency on the x axis and a different frequency on the y axis. In Australia, the ABC station's test pattern is a lissjous figure, made by setting the y axis to three times the frequency of the x axis. To experiment with this I recommend the lissajous lab These lissjous figures are done in 3-D using OpenGL. The attraction is that I can draw them in 3-D, and rotate them to look at them from all sides. Eventually I would like to have a mode where the camera races along the 'wires', giving a virtual rollercoaster ride. Regrettably that will have to wait for me to get a fair chunk of spare time together. There is more to this screensaver than just the shapres. The lissajous patterns rotate and the beads follow each other 'nose to tail'. The movements follow a regular pattern but are just a little too complicated for the eye to follow. Some people enjoy this effect. I have also managed to get some different models (other than balls) to draw the patterns with. My favourite is the flying gears(ripped from the gears demo), but I would really like to have teacups and saucers. It's a terribly cliche, but I can't seem to restrain myself. Can anyone point me to some GL code to draw cups and saucers? And maybe some sailing ships to replace the bars.
Der Oszillograph Translate this page Der Oszillograph. Dieses Pendel greift eine Entwicklung des französischenPhysikers jules Antoine lissajous (1822-1880) auf. lissajous http://www.science-days.de/ontour/oszillo.htm
Extractions: Der Oszillograph Dieses Pendel greift eine Entwicklung des französischen Physikers Jules Antoine Lissajous (1822-1880) auf. Lissajous führte u.a. Untersuchungen zur sichtbaren Darstellung von Schwingungen durch und entwickelte dabei das Verfahren der Lissajous-Figuren. Diese Figuren sind aufgezeichnete Überlagerungskurven zweier zueinander senkrecht stehender Schwingungen. Lissajous fand heraus, dass man geschlossene Kurven immer dann erhält, wenn die Frequenzen der beiden Schwingungen in einem rationalen Verhältnis stehen (1:1; 1:2; 1:3;...) (Abb. 1). Ist das Frequenzverhältnis nicht rational, schließt sich die Lissajous-Schleife nie und überstreicht mit der Zeit die ganze Fläche (Abb. 2). Man kann diese Figuren mit einem Doppelpendel erzeugen, einer Einrichtung, bei der ein Schwingstift von 2 Pendeln gesteuert wird. Abb. 1 Abb. 2 webmaster
Lissajous Lab Java simulation of an oscilloscope. Use lissajous figures to create colorful patterns and string art. lissajous Figures. lissajous (pronounced LEEsuh-zhoo) figures were discovered by the French http://www.mathcats.com/explore/lissajous/lissajous.html
Extractions: To operate: Click the Preset buttons at the left to see sample patterns. To make your own patterns, use the digital readouts at the right. Click near the top of a digit to increase its value; click near the bottom to decrease its value. Explanation of Readout Values xFreq the number of horizontal cycles for each frame of the plot. yFreq the number of vertical cycles for each frame of the plot. hueFreq This is the number of hue cycles for each frame of the plot. Each hue cycle represents a complete spectrum of colors. Samples This is the number of line segments which will be used to draw each frame of the plot. Increasing this number will make the curves appear smoother. Decreasing this number will exacerbate the aliasing in the plot (making it look more like string art than a mathematical curve). Lissajous (pronounced LEE-suh-zhoo ) figures were discovered by the French physicist Jules Antoine Lissajous. He would use sounds of different frequencies to vibrate a mirror. A beam of light reflected from the mirror would trace patterns which depended on the frequencies of the sounds. Lissajous' setup was similar to the apparatus which is used today to project laser light shows. Before the days of digital frequency meters and phase-locked loops, Lissajous figures were used to determine the frequencies of sounds or radio signals. A signal of known frequency was applied to the horizontal axis of an oscilloscope, and the signal to be measured was applied to the vertical axis. The resulting pattern was a function of the ratio of the two frequencies.
Lissajous Curve From MathWorld lissajous Curve from MathWorld lissajous curves are the family of curves described by the parametric equations x(t) = A\cos(\omega_x t\delta_x) y(t) = B\cos(\omega_y t-\delta_y), sometimes http://rdre1.inktomi.com/click?u=http://mathworld.wolfram.com/LissajousCurve.htm
Crazy Bone - Online Fun, Games And Jokes For Kids Of All Ages! Java simulation of an oscilloscope. Use lissajous figures to create colorful patterns and string art. lissajous Figures. lissajous (pronounced LEEsuh-zhoo) figures were discovered by the French http://www.crazybone.com/osc