Loodus- Ja Täppisteadlaste Eluaastaid K kaluza, theodor Franz Eduard (18851945) Kamerlingh-onnes, Heike (1853-1926) (HOLfüüsik) Kepler, Johannes (1571-1630) (GER astronoom ja matemaatik) Kerr http://www.physic.ut.ee/~janro/
Brian Greene: The Elegant Universe. Part 2. In 1919, theodor kaluza showed Einstein that general relativity could unite hisequation of gravity with Maxwell s electromagnetic equations, by assuming a http://www.voting.ukscientists.com/greene2.html
Extractions: super-string cosmology. Postscript: Parallel universes. In 1919, Theodor Kaluza showed Einstein that general relativity could unite his equation of gravity with Maxwell's electro-magnetic equations, by assuming a fourth dimension of space. ( With time, this made five dimensions in all. ) Oskar Klein suggested the fourth dimension could exist as a curled-up space too small to be observable, perhaps being only of Planck length. A simple analogy is that a garden hose looks like a single dimension from a distance. But close up, the line has thickness admitting of another circular dimension that can be traveled round by an insect. Kaluza's findings didnt fit the experimental data about the electron's mass and charge. Eventually, as more particles and the strong and weak forces became known, theorists wondered whether the fault with Kaluza-Klein theory had been too few dimensions rather than too many. This turned out to be the case for string theory. It had resolved the infinite probabilities, thrown up by elementary point particles, in an attempted quantum gravity theory. But negative probabilities also kept turning up. And these could only be removed by letting the strings vibrate in nine dimensions. ( A tenth spatial dimension was later infered, making eleven, including time. )
Names Jacobsthal James62J07 Jordan Kac Kahler kaluza Kan18A40 Karoubi19D25 Kasparov19K35 Hopf Hurwitz Jacobi Jacobson Jordan kaluza Klein Korteweg Kovalevskaya Kronecker Krull Kutta http://www.math.niu.edu/~rusin/known-math/98/MSC.names
?-?(Kaluza-Klein Model) The summary for this Chinese (Simplified) page contains characters that cannot be correctly displayed in this language/character set. http://www.qiji.cn/baike/pages/8.html
Zeitlinien Friedrich Hornischer theodor KaluzaUni Königsberg unser U hat vielleicht mehr als 3 räumliche Dimensionen. http://www.zeitlinien-friedrich-hornischer.de/greene2.htm
Extractions: W iw.pl Na bie¿±co: I nformacje C o nowego Matematyka i przyroda: A stronomia B iologia ... odelowanie rzeczywisto¶ci Humanistyka: F ilozofia H istoria ... ztuka Czytaj: B iblioteka D elta ... ielcy i wiêksi Przydatne: S ³owniki C o i gdzie studiowaæ ... szech¶wiat w obrazkach Jeste¶ tutaj: Wirtualny Wszech¶wiat Biblioteka Fizyka Jeste¶ tutaj Piêkno Wszech¶wiata - "UKRYTE WYMIARY" Tekst niniejszy jest rozdzia³em 8 ksi±¿ki Briana Greene'a "Piêkno Wszech¶wiata. Superstruny, ukryte wymiary i poszukiwania teorii ostatecznej" , która ukaza³a siê w marcu 2001 r. w serii "Na ¶cie¿kach nauki". Szukacz Przeszukaj Wirtualny Wszech¶wiat: Jak zadawaæ pytania? UKRYTE WYMIARY Dziêki szczególnej i ogólnej teorii wzglêdno¶ci Einsteinowi uda³o siê rozwik³aæ dwie zasadnicze sprzeczno¶ci naukowe ostatniego stulecia. Kiedy dostrzeg³ owe problemy, nie przypuszcza³, ¿e ich usuniêcie zrewolucjonizuje nasze pogl±dy na przestrzeñ i czas. Teoria strun rozwi±zuje trzeci± z wielkich zagadek ostatniego stulecia. Wymaga jednak, aby¶my poddali nasze wyobra¿enia o przestrzeni i czasie tak radykalnej zmianie, ¿e nawet Einsteinowi wyda³aby siê ona niezwyk³a. Teoria strun wstrz±sa podstawami wspó³czesnej fizyki. Zdecydowanie i przekonuj±co odrzuca nawet powszechnie przyjêt± liczbê wymiarów Wszech¶wiata - warto¶æ uznawan± dot±d za niepodwa¿aln±. Do¶wiadczenie kszta³tuje intuicjê. Tworzy tak¿e uk³ad odniesienia dla analizowanych i interpretowanych zjawisk. Niew±tpliwie spodziewamy siê, ¿e na przyk³ad dziecko wychowane przez stado wilków bêdzie interpretowa³o ¶wiat zupe³nie inaczej ni¿ my. Nawet porównywanie ludzi wyros³ych w ró¿nych kulturach uwidacznia przemo¿ny wp³yw do¶wiadczeñ na nasz sposób my¶lenia.
Extractions: Dictionaries: General Computing Medical Legal Encyclopedia Word: Word Starts with Ends with Definition Noun Theodor Mommsen - German historian noted for his history of Rome (1817-1903) Mommsen historian historiographer - a person who is an authority on history and who studies it and writes about it Legend: Synonyms Related Words Antonyms Some words with "Theodor Mommsen" in the definition: cell doctrine
Extractions: Geschichte. Infinitesimalmathematik: Hofmann, Jos. E. / Wieleitner, Heinrich "erste Versuche Leibnizens und Tschirnhausens, eine algebraische Funktion zu integrieren" in: Archiv f. Geschichte der Mathhematik, der Naturwiss. u. d. Technik, 13.Bd. (1931), S. 277 - 292 Hofmann, Jos. E. "Das Opus Geometricum des Gregorius a S. Vincentio und seine Einwirkung auf Leibniz" in: Abhdl. D. Preuß. Akad. d. Wiss. Jahrgang 1941, Nr. 13, Berlin 1942 Hofmann, Joseph E. "Leibniz´ mathematische Studien in Paris" in: "Leibniz zu seinem 300. Geburtstag" Lieferung 4, Berlin 1948 Hofmann, Jos. E. "Aus der Frühzeit der Infinitesimalmethoden: Auseinandersetzung um die algebraische Quadratur algebraischer Kurven in der zweiten Hälfte des 17. Jahrhunderts" Archive for history of exact sciences, Berlin ..., S. 270 - 343
Curled-Up Dimensions One of the first suggestions for closed cylindrical dimensions was made by TheodorKaluza in 1919, in a paper communicated to the Prussian Academy by Einstein http://www.meta-religion.com/Physics/Cosmological_physics/curled-up_dimensions.h
Extractions: to promote a multidisciplinary view of the religious, spiritual and esoteric phenomena. About Us Links Search Contact ... Back to Physics Religion sections World Religions New R. Groups Ancient Religions Spirituality ... Extremism Science sections Archaeology Astronomy Linguistics Mathematics ... Contact Please, help us sustain this free site online. Make a donation using Paypal: The simplest cylindrical space can be represented by the perimeter of a circle. This one-dimensional space with the coordinate X has the natural embedding in two-dimensional space with orthogonal coordinates (x ,x ) given by the circle formulas x /R = cos(X/R) x /R = sin(X/R) From the derivatives dx /dX = sin(X/R) and dx /dX = cos(X/R)we have the Pythagorean identity (dx + (dx = (dX) . The length of this cylindrical space is 2 p R.
? The summary for this Russian page contains characters that cannot be correctly displayed in this language/character set. http://www.creme.mk.ua/m1fr8.htm