Biografía De Theodor Franz Eduard Kaluza Translate this page theodor kaluza. theodor Franz Eduard kaluza, hijo de Max kaluza, experto en fonética,y en literatura y lengua inglesa, nació en Ratibor en Alemania. http://www.astrocosmo.cl/biografi/b-t_kaluza.htm
Extractions: Theodor Franz Eduard Kaluza , hijo de Max Kaluza, experto en fonética, y en literatura y lengua inglesa, nació en Ratibor en Alemania. Desde niño, mostró una excelente disposición para los estudios, llegando a recibir su enseñanza superior en la universidad de Königsberg, donde él también se desempeñó como docente auxiliar entre 1902 y 1929 (un puesto que la mayoría del tiempo que lo desempeñó no recibió remuneraciones). Luego, en el año académico 1929 1930, y por expresa recomendación de Albert Einstein, fue nombrado profesor de una cátedra de física en la universidad de Kiel. Permaneció en ese establecimiento educacional hasta 1935, año en que se trasladó a un puesto similar a la universidad de Göttingen. En la teoría de la relatividad general de Einstein, se considera la existencia de un espaciotiempo cuadridimensional (tres dimensiones espaciales y una de tiempo). En 1921, y con el objeto de unificar la gravedad con el electromagnetismo, Kaluza decidió a suplementar al modelo relativista Einstein con una quinto dimensión espacial. Dentro de este modelo probó la posibilidad de derivar las ecuaciones gravitacionales cuadridimensionales de Einstein como las ecuaciones de campo electromagnéticas. Así en un mundo de cinco dimensiones, la gravedad y el electromagnetismo no eran fuerzas separadas. Sin embargo, en el modelo pentadimensional de Kaluza se presentaban dos defectos importantes. En primer lugar, la teoría no describía la naturaleza de la quinta dimensión. Por otra parte, en el modelo se asumía un comportamiento clásico para los cuerpos, sin considerar los efectos de la mecánica cuántica. Una de las tentativas para corregir esos defectos fue hecha en 1926 por
(Una Quinta Dimensión Y Más Allá) Translate this page espaciotiempo (dimensiones tan pequeñas que no contradicen la experiencia) la descubrió,en el marco de la relatividad general de Einstein, theodor kaluza. http://www.astrocosmo.cl/h-foton/h-foton-12_05-02-01.htm
Extractions: U na de las características más evidente de nuestro mundo físico y que prácticamente a nadie le llama la atención es la tridimensionalidad del espacio. En la teoría de la relatividad especial de Einstein, el espacio y el tiempo pasan a estar tan íntimamente entrelazados que Hermann Minkowski consiguió demostrar que en ella el tiempo podía considerarse una cuarta dimensión (aunque no sea una dimensión espacial). Nadie tiene la menor idea de por qué el mundo en que vivimos tiene una dimensión temporal y tres espaciales y no, por ejemplo, once dimensiones. Por supuesto, el mundo sería muy distinto si alterásemos su dimensionalidad. Quizá las dimensiones superiores sean fatales para la vida y debamos agradecer nuestra modesta asignación de cuatro. Las tres dimensiones espaciales observadas son dimensiones «grandes»: podemos caminar por ellas. Si existieran dimensiones adicionales, no deberían ser como las «tres grandes»; si lo fuesen, también podríamos caminar por ellas, lo cual choca claramente con la experiencia. Las dimensiones extra que contemplan los físicos son dimensiones «pequeñas», tanto que no pueden verse, y por ello no influyen directamente en nuestra perspectiva tridimensional del mundo. ¿Qué son dimensiones «pequeñas»? Para entender lo que son dimensiones «pequeñas», imaginemos un mundo con una sola dimensión «grande». El espacio de este mundo unidimensional estaría representado por una línea infinitamente larga. Imaginemos luego que esa línea se apoya en la superficie de un cilindro, de forma que el espacio completo está ya representado por la superficie bidimensional del cilindro. La segunda dimensión «extra» corresponde a andar alrededor del cilindro. Si lo hacemos, volvemos al punto de partida: la dimensión extra es un círculo, no una línea.
Skolavpohode.cz kaluza, theodor Franz Eduard (18851945) Nemecký matematik, který zasvetilivot tvorbe jednotné teorie gravitacního a elektromagnetického pole. http://www.skolavpohode.cz/clanek.asp?polozkaID=3683
Skolavpohode.cz Lex, Jeans, James (18771946), zaregistruj se - uvidí to. Lex, kaluza,theodor Franz Eduard (1885-1945), zaregistruj se - uvidí to. http://www.skolavpohode.cz/prehled.asp?predmetID=5
Theodor Kaluza Translate this page Termessos Verlag, Biographie des Erfinders der 5.ten Dimension theodor kaluza, Wissenschaftsgeschichte,Philosophie. theodor kaluza als Professor in Kiel 1929. http://www.theodorkaluza.com/
Kaluza-Klein Teorie To bylo objeveno matematikem theodor kaluza to jestlie obecná relativnost je rozírilse do petrozmerný spacetime, rovnice mohou být oddelil se do http://wikipedia.infostar.cz/k/ka/kaluza_klein_theory.html
Der Erfinder Der Fünften Dimension - Zum 50. Todestag Von Theodor Translate this page Zum 50. Todestag von theodor kaluza. theodor kaluza kam 1885 in einer deutschen,katholischen Familie in Wilhelmsthal-Oppeln (Oberschlesien) zur Welt. http://www.nzz.ch/2004/01/21/ft/page-article9C8ZJ.html
NOVA | The Elegant Universe | Imagining Other Dimensions | PBS In 1919, Polish mathematician theodor kaluza proposed that the existence of afourth spatial dimension might allow the linking of general relativity and http://www.pbs.org/wgbh/nova/elegant/dimensions.html
Extractions: The Elegant Universe homepage For most of us, or perhaps all of us, it's impossible to imagine a world consisting of more than three spatial dimensions. Are we correct when we intuit that such a world couldn't exist? Or is it that our brains are simply incapable of imagining additional dimensions dimensions that may turn out to be as real as other things we can't detect? String theorists are betting that extra dimensions do indeed exist; in fact, the equations that describe superstring theory require a universe with no fewer than 10 dimensions. But even physicists who spend all day thinking about extra spatial dimensions have a hard time describing what they might look like or how we apparently feeble-minded humans might approach an understanding of them. That's always been the case, and perhaps always will be. From 2-D to 3-D An early attempt to explain the concept of extra dimensions came in 1884 with the publication of Edwin A. Abbott's Flatland: A Romance of Many Dimensions . This novel is a "first-person" account of a two-dimensional square who comes to appreciate a three-dimensional world. The square describes his world as a plane populated by lines, circles, squares, triangles, and pentagons. Being two-dimensional, the inhabitants of Flatland appear as lines to one another. They discern one another's shape both by touching and by seeing how the lines appear to change in length as the inhabitants move around one another.
Space-Time-Matter Correlations theodor kaluza Theory that used the fifth dimension to unifiedMaxwell s Electromagnetism and Albert Einstein s Gravitation Theory; http://www.matter-antimatter.com/space-time-matter.htm
Extractions: Home Up Milky Way Galaxy Solar System ... Comets Space-Time-Matter Under Construction F or centuries, people have been trying to understand the basic concepts of nature that will enable humanity to flourish on earth. Today, our existence is based upon making products and burning our natural resources. This is rapidly depleting our natural resources and destroying our environment. The growing population has outstripped the available resources and the disparity between the haves and have nots is becoming real problem. P aul Wesson is in the process of solving the remaining parts of the Space-Time-Matter Continuum. Details are contained in his book, Space-Time-Matter , Modern Kaluza-Klein Theory, the article by and numerous references on web site. The five dimension transformations confirm unification of many of the exiting theories: Correlations Theodor Kaluza Theory that used the fifth dimension to unified Maxwell's Electromagnetism and Albert Einstein's Gravitation Theory Correlations Oskar Klein Theory that applied Kaluza's Theory to quantum theory and has become the basis of modern string and super string theory.
Science Timeline Translate this page Kahn, Robert E., 1973. Kalckar, Herman Moritz, 1940. kaluza, theodor, 1921, 1926.Kandel, Eric R., 1965, 1982, 1985. Kant, Immanuel, 1755, 1781, 1786, 1790, 1796. http://www.sciencetimeline.net/siteindex_i-k.htm
Extractions: a b c d ... w-x-y-z IBM, (International Business Machines), 1935, 1944, 1957 Ibn Ezra, Abraham ben Meir, 1145 Iliopolos, John, 1969 Infeld, L., 1938 Ingelhousz, Jan, 1779 Ingram, Vernon, M. 1956 irrigation, 3500 bce Ising, Ernst 1925, 1931, 1944 Ising, Gustaf, 1925, 1928 ISO, 1996, 1999 Ivanovsky, Dmitri Iosefovich, 1882 Jackson, D. A., 1972 Jackson, J. Hughlings, 1884 Jacob, A. E., 1974 Jacquard, Joseph-Marie, 1801 Jakobson, Roman, 1940 James, William, 1890 Jameson, Dorethea, 1955 Janet, Pierre, 1886, 1919 Jansky, Karl, 1931, 1933, 1939 Janssen, Zacharius and Hans, 1590 Jaynes, Julian, 1976 Jeans, James Hopwood, 1917 Jeffreys, Alec John, 1984
Viktor's Home Page: Maxima And The Kaluza-Klein Metric In 1919, theodor kaluza proposed an extension to general relativity usingan appropriately constructed fifth dimension, he was able to incorporate http://www.vttoth.com/max_kaluza.html
Extractions: Welcome to Viktor Toth's Web Site Note: this is a work-in-progress . Source code, when considered to be sufficiently stable, will be provided through the open-source Maxima project at maxima.sourceforge.net In 1919, Theodor Kaluza proposed an extension to general relativity: using an appropriately constructed fifth dimension, he was able to incorporate electromagnetism into Einstein's theory of gravity. Recently, I endeavored to replicate the most basic of Kaluza's results: the equation of motion for a particle in empty dive-dimensional space, as seen from a four-dimensional perspective. Now that I am working with Maxima , the question arose: can the same result be reproduced using this computer algebra system? The answer, surprisingly, is a yes. Well, sort of. Some minor modifications were needed to the itensor package, nothing Earth-shattering really, the changes are probably best described as bug fixes. (If you're a Maxima user, these changes are not yet in the CVS version. Soon...) One of the key features of the itensor package is the ability to define components of a symbolic tensor in an algorithmic fashion. For instance, you could specify the covariant and contravariant components of the tensor
Wolframscience.com K^0 particle and time reversal violation, 1019 K_33 nonplanar graph, 527 Kabala(universal object), 1127 kaluza, theodor FE (Germany, 1885-1954) and notions http://www.wolframscience.com/nksonline/index/k.html
SmartPedia.com - Free Online Encyclopedia - Encyclopedia Books. theodor Geisel, theodor Hendrik van de Velde, theodor Herzel. theodor Herzl,theodor Heuss, theodor kaluza. theodor Kocher, theodor Kullak, theodor Liebknecht. http://www.smartpedia.com/smart/browse/Special:Allpages&from=Theif
References For Kaluza References for theodor Franz Eduard kaluza. Biography in Dictionaryof Scientific Biography (New York 19701990). Books PG Bergmann http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZD3D6.htm
Theodor Kaluza Article on theodor kaluza from WorldHistory.com, licensed from Wikipedia,the free encyclopedia. Return to Article Index theodor kaluza. http://www.worldhistory.com/wiki/T/Theodor-Kaluza.htm
Dimensional Madness: An Introduction theodor kaluza Oskar Klein Source http//server.physics.miami.edu/~curtright/4photos.htmlhttp//wwwgap.dcs.st-and.ac.uk/~history/ PictDisplay/Klein_Oskar http://www.geocities.com/physics4u_dimensions/intro.htm
Extractions: http://www-gap.dcs.st-and.ac.uk/~history/ PictDisplay/Klein_Oskar.html The concept of extra dimensions originated in the 1920s when Theodor Kaluza and Oskar Klein attempted to unify electromagnetism and gravity. The mathematics involved with the Kaluza-Klein theory proved to match reality more closely if an extra dimension were included in its calculations. They therefore proposed that there might in fact be five dimensions rather than the conventional three spaces dimensions and one time dimension with which we are familiar. However, years later, it was discovered that the theory had extreme faults, leading to the abandonment of the idea of extra dimensions until the 1980s when the string theory was introduced. Quantum mechanics generally describes the smallest structures in the universe such as electrons and quarks while its extreme opposite, the theory of relativity, is usually applied to explaining the largest structures in the universe such as stars, galaxies and black holes. The most complex problem of twentieth century theoretical physics is trying to relate these two to explain extreme physical circumstances such as the state of the universe just before the big bang. Unfortunately, general relativity and quantum mechanics are mathematically incompatible.
Where Does This Theory Come From? In 1921, theodor kaluza, a contemporary and associate of Albert Einstien,published his theory on space time and dimensions. This http://www.geocities.com/phy111group24/theory.html
Extractions: WARNING: The ideas and terms put forward by these two men were revolutionary for their time, but still to this day create confusion among everyone but the foremost leaders in astrophysics. Good Luck! Klein's compactification idea about the 5th dimension was the main bridge between electromagnetism and general relativity. Because the 5th dimension was so "compact", the four other dimensions would be able to exist freely enough to maintain their orginal properties but that 5th dimension would create the electromagnetism to complete Maxwell's equations. This would result in the so called U(1) gauge symmetry of the four dimensional vector. U(1) is simply the rotations around a circle. So as the four original dimensions interact with eachother, the 5th dimension circles around much like an electron around an atomic nuclei. If this electron has a degree of freedom corresponding to a point on the circle, and that point is free to vary as it moves around in spacetime, we find that there must also exists a photon and that the