Occident introduit l usage des lettres à la place des symboles numériques. http://www.cerimes.fr/e_doc/nombre/occid.htm
Algebra In The Renaissance The use of letters for numbers is already found in the work of JordanusNemorarius (13th century). But his work lacks the combination http://www.maths.wlv.ac.uk/mm2217/ar.htm
Extractions: The existing knowledge of both arithmetic and algebra came to Western Europe through the study of Arab mathematics. But not until the fifteenth century were symbols used, as Diophantus had done, for the commonest arithmetical operations. About that time, the symbols and for plus and minus were usual in Italy and France. They had been introduced by Lucia Pacioli (1445-1514) as abreviations for the words piu (more) and meno ( less). The symbols + and - occurred in Germany in 1480. These symbols were first to be printed in 1489 in a book by the Rechenmeister Johan Widmann. The symbols and for multiplication and division do not appear until the 17th century. At this time, the sign for equality caught on, although it occurs earlier in an algebra textbook by the englishman Robert Recorde (1510-58), which appeared in 1557. Recorde introduced the sign with the justification that no two things can be more equal than a pair of parallel lines. Albert Girard (1595-1632) seems to have been the first to give negative solutions full recognition. Also, the interpretation of negative numbers as line segments in the opposite direction was taken up again. However a precise foundation for the arithmetic of negative numbers had to wait until the beginning of the nineteenth century. Complex numbers were used from the 16th century, initially to aid in the solution of cubic equations, but these were viewed with even more scepticism.
Extractions: CURIOSIDADES Quotations Geometria Os Sinais POESIA MATEMÁTICA - Millôr Fernandes Às folhas tantas Do livro matemático Um Quociente apaixonou-se Um dia Doidamente Por uma Incógnita. Olhou-a com seu olhar inumerável E viu-a, do Ápice à Base. Uma figura ímpar: Olhos rombóides, boca trapezóide, Corpo otogonal, seios esferóides. Fez da sua Uma vida Paralela à dela Até que se encontraram No infinito. "Quem és tu?" indagou ele Com ânsia radical. "Sou a soma do quadrado dos catetos. Mas pode me chamar de Hipotenusa." E de falarem descobriram que eram O que, em aritmética, corresponde A almas irmãs Primos-entre-si. E assim se amaram Ao quadrado da velocidade da luz Numa sexta potenciação Traçando Ao sabor do momento E da paixão Retas, curvas, círculos e linhas sinoidais. Escandalizaram os ortodoxos das fórmulas euclideanas E os exegetas do Universo Finito. Romperam convenções newtonianas e pitagóricas. E, enfim, resolveram se casar Constituir um lar. Mais que um lar, Uma Perpendicular. Convidaram para padrinhos O Poliedro e a Bissetriz.
Extractions: Comune di Pisa Università di Firenze Università di Pisa Il Giardino di Archimede Un museo per la matematica Provincia di Pisa Micrologus Natura, scienze e società medievali Regione Toscana Società Internazionale per lo Studio del Medioevo Latino Con il contributo della Camera di Commercio di Pisa
Kronoloji 1155 Bhaskara, Ilk devinim makinasinin açiklanmasi. 1225 JordanusNemorarius, Kaldiraç mekanizmalari ve hareketin bilesimleri. http://www.sonboyut.net/kronoloji/koronoloj585-1630.htm
Extractions: YIL KÝÞÝ OLAY Thales of Miletus Eclipse'in öngörümü Thales of Miletus Bilimsel düþüncenin doðuþu Thales of Miletus Temel element olarak su Thales of Miletus Mýknatýslar ve ovalanmýþ kehribarýn çekim gücü Thales of Miletus Ilk Kozmolojik bilgiler Anaximenes Düz dünya Pythagoras Dünyayý anlama ve matematik Anaximander Dünya yüzeyi eðri(silindir) Parmenides Deðiþim paradoksu ve matematik Pythagoreans Dünya küredir Oenopides Dünyanýn ecliptic'e olan eðim açýsýnýn bulunmasý Protagoras Gerçek, duyulardan anlaþýlabilir Heraclitus Ana madde olarak ateþ Heraclitus Deðiþim, var olmanýn temelidir Parmenides Dünya küredir Anaxagoras Madde tohumlardan oluþmuþtur Anaxagoras Güneþ,ay ve yýldýzlar dünya ile ayný maddeden oluþmuþtur Anaxagoras Güneþde yanan kayalar Eudoxus Gök kubbesi Empedocles Dört element: dünya,hava,ateþ ve su Philolaus Dünya dönüyor Zeno Kesintili veya devamlý uzay ve zaman paradoksu Leucippus Görülemeyen atomlar Democritus Atom teorisi Plato Bilgi teorisi Plato Beþinci element olarak ether Democritus Samanyolu birçok yýldýzdan oluþuyor Aristotle Serbest düþen cisimler hýzlanýr fakat hafif olanlar daha çabuk düþer Heracleides Merkur ve venus güneþin etrafýnda dolanýyor Chinese Supernova'nýn ilk kayýtlý gözlemi Heracleides Dünya dönüyor Aristotle Dünya yuvarlak Aristotle Uzay sürekli ve her yeri madde ile dolu Kiddinu Gün-tün eþitliðinin devinimi Strato Serbest düþüþ deneyleri ve kaldýraçlar Aristotle Fizik ve meta fizik Aristotle Yermerkezli Kozmoloji
SEU. Lecture 02. The summary for this Russian page contains characters that cannot be correctly displayed in this language/character set. http://www.polarcom.ru/~vvtsv/s_doc1a.htm
Extractions: ïåðâîå èçâåñòíîå èñòîðèè îïèñàíèå ïîñòîÿííî äåéñòâóþùåé ìàøèíû (äâèãàòåëÿ), íå èñïîëüçóþùåé ìóñêóëüíóþ ñèëó ëþäåé, æèâîòíûõ, ýíåðãèþ âåòðà èëè äâèæóùåé âîäû (Bhaskara, 1155) Ñ àíàëîãè÷íîé ïðîáëåìîé â Åâðîïå ñòîëêíóëèñü ïîñëå íà÷àëà ìàññîâûõ ãðóçîïåðåâîçîê ïî Ñðåäèçåìíîìó ìîðþ âî âðåìåíà êðåñòîâûõ ïîõîäîâ (1096-1270). Îò ïåðâûõ êðåñòîíöåâ â ðóêè ñâåòñêèõ è öåðêîâíûõ âëàñòåé íà÷èíàþò ïîñòóïàòü ìíîãî÷èñëåííûå ñâèäåòåëüñòâà òåõíîëîãè÷åñêîé îòñòàëîñòè Åâðîïû, è õðèñòèàíñêàÿ öåðêîâü, åäèíñòâåííûé â òî âðåìÿ õðàíèòåëü çíàíèé, ïðèõîäèò ê âûâîäó îá îïàñíîñòè äàëüíåéøåé êîíñåðâàöèè îáùåñòâà íà óðîâíå áèîëîãè÷åñêîé è âåòðî-âîäÿíîé ýíåðãåòèêè. Ñ XII â. íà÷èíàåòñÿ ïîñòåïåííûé îòõîä îò ïî÷òè 600-ëåòíåé ïîääåðæêè ïîñòóëàòà Íåâåæåñòâî ìàòü èñòèííîãî áëàãî÷åñòèÿ, ñôîðìóëèðîâàííîãî â VI â. Ðèìñêèì Ïàïîé (Pope) ðèãîðèåì I (540-604).  èñòîðèþ íàóêè ðèãîðèé I âîøåë êàê ÷åëîâåê, çàïðåòèâøèé èçó÷åíèå ìàòåìàòèêè çà åå ñâÿçü ñ âîëøåáñòâîì, ÷òî âëåêëî çà ñîáîé ïåðñïåêòèâó àâòîìàòè÷åñêîãî îáâèíåíèÿ â êîëäîâñòâå ëþáîãî ÷åëîâåêà, óìåþùåãî ïðîèçâîäèòü ñ ÷èñëàìè îïåðàöèè, îòëè÷íûå îò ñëîæåíèÿ è âû÷èòàíèÿ. Ïîñëåäíÿÿ ïîïûòêà íàëîæåíèÿ çàïðåòà íà çíàíèÿ ñâÿçàíà ñ èìåíåì Èîñèôà Äæóãàøâèëè (È.Ñòàëèíà), ïûòàâøåãî ñïóñòÿ 14 ñòîëåòèé çàïðåòèòü â ÑÑÑÐ "áóðæóàçíûå ëæåíàóêè" êèáåðíåòèêó è ãåíåòèêó, ñîñòàâëÿþùèå îñíîâó ñîâðåìåííûõ òåõíîëîãèé.
AIM25: University College London: Peckham Manuscript Bound (perhaps from the first) with two printed works, the Arithmetica of JordanusNemorarius, edited by Jacques le Fêvre (Johannes Higman and Wolfgang Hopyl http://www.aim25.ac.uk/cgi-bin/frames/fulldesc?inst_id=13&coll_id=3439
Pedro Nunes, 1502-1578: Fontes: Outras Translate this page 46. Arithmetica decem libris demonstrata - BN SA 632 1 A. JORDANUSNEMORARIUS, fl. 1230. Jordani Nemorarij Clarissimi viri Elementa http://bnd.bn.pt/ed/pedro-nunes/obras/fontes-p-nunes/pn_fontes_outras_46.html
Extractions: BN S.A. 632 1 A. - Faltam as folhas no opúsculo "Música Libris demonstrata quator" que correspondem às assinaturas "f" e "g". - Encadernado com: Perspectiva communis / Johannes Peckham. - Pert.: "BIBLIOTHECA CAZA DE S. VICENTE" (carimbo). - Encadernação em pele, sobre pastas de cartão, com gravações a ouro na lombada. - Vestígios de insectos bibliófagos
Extractions: T¼bingen wird erstmals als Stadt (civitas) bezeichnet. Friedrich II. verbietet den Gebrauch von Papier f¼r f¼r die amtlichen Akten seiner Kanzlei. Friedrich II. erkl¤rt alle st¤dtischen Einrichtungen (comunia, consilia, magistri civium, rectores, officiales), die von der Gesamtheit der B¼rger (universitas civium) ohne Einwilligung der jeweiligen Bisch¶fe geschaffen worden sind, f¼r ung¼ltig, auch St¤dteb¼nde. Die Dominikaner werden als Orden von Papst Gregor IX. mit der Inquisition beauftragt. (Zuweilen werden auch Franziskaner ernannt.) Die Inquisitoren haben die Verd¤chtigen aufzufordern, sich innerhalb von 14 bis 40 Tagen freiwillig zu stellen. Danach werden Anzeigen anderer entgegengenommen. Dabei gen¼gen zwei anonym bleibende Ankl¤ger, um jemanden f¼r schuldig zu erweisen. Gesteht der Angeklagte, werden ihm Buen auferlegt. Erst wenn er hartn¤ckig bleibt, wird er der weltlichen Gewalt zur Verbrennung ¼bergeben. Wilhelm von Auvergne wird Bischof von Paris (bis 1236). W¤hrend seiner Amtszeit verfat er ein Werk namens "De universeo creaturarum," in welchem er die Bewegung der himmlischen Sph¤ren durch magnetische Induktion erkl¤rt, der F¤higkeit eines Magneten, ein St¼ck Eisen zu magnetisieren.
wj The summary for this Japanese page contains characters that cannot be correctly displayed in this language/character set. http://www2m.biglobe.ne.jp/~m-souda/mysouda/math/smith/chapter6/math2.html