Les Sciences Chez Les Arabes Translate this page Mathématicien, physicien et philosophe arabe, thabit ibn qurra est unbon représentant de la culture arabe du 9e siècle. Descendant http://www.stormloader.com/enit/research/Un peu d'histoire des sciences arabes.h
Extractions: la fin du livre IX des , Euclide donne une th orie des nombres parfaits et d montre que le nombre n = 2p(2 p+1 -1) est parfait c est- -dire gal la somme de ses diviseurs propres si (2 p ) est un nombre premier. Th a bit ibn Qurra d cide donc de construire cette th orie. Il nonce et d montre, dans le pur style euclidien, le th or me le plus important jusqu ici pour ces nombres, et qui porte aujourd hui son nom. Notons s n ) la somme des parties aliquotes de l entier n , et s n s n n la somme des diviseurs de n , et rappelons que deux entiers a et b sont dits amiables si s a b et s b a ; le th or me d Ibn Qurra s nonce ainsi: Pour n 1, posons p n n q n 1; si p n-1 p n et q n sont premiers, alors a n p n-1 p n et b n q n sont amiables.
Ummah.com Print_a Science Feature Muslim Scientists thabit ibn qurra (836 CE). thabit ibn qurra ibn Marwan alSabial-Harrani was born in the year 836 CE at Harran (present Turkey). http://www.ummah.com/science/printscfeature.php?scfid=13
Thabit Ibn Qurrah (Thebit), 836-901 C.E. thabit ibn QURRAH (THEBIT) thabit ibn Qurrah, known in the West as Thebit, is knownfor his work on mechanics, astronomy, pure mathematics and geometry. http://www.unhas.ac.id/~rhiza/saintis/qurra.html
Extractions: Thabit ibn Qurrah, known in the West as Thebit , is known for his work on mechanics, astronomy, pure mathematics and geometry. Thabit ibn Qurrah ibn Marwan al-Harrani was born in 836 C.E. at Harran (present Turkey) and died in Baghdad in 901 C.E. He joined the scientific team of the great Muslim mathematician Muhammad Ibn Musa Ibn Shakir at Baghdad, which was established by the Abbasid Caliphs. Thabit was a pioneer in extending the concept of traditional geometry to geometrical algebra and proposed theories that led to the development of non-Euclidean geometry, spherical trigonometry, integral calculus and real numbers. He used arithmetic terminology to study several aspects of conic sections (parabola and ellipse). His algorithm for computing the surface area and volume of solids is in fact what we came to know later as the integral calculus. Thabit's original work on Mechanics and Physics involves examining conditions of equilibrium of bodies, beams and levers. Some historians have recognized him as the Founder of Statics. He was among the early critics of Ptolemaic views on astronomy. He also criticized several theorems of Euclid's elements and proposed important improvements. Thabit added the ninth sphere to Ptolemic astronomy. Some early investigators criticized his work on 'Trepidation of Equinoxes' and several centuries later Tycho Brahe (1546-1601) improved upon his work. Thabit analyzed several problems on the movements of sun and moon and wrote treatises on sundials. Beer and Madler in their famous work Der Mond (1837) mention a surface feature of the moon after Thabit (Thebit). It is a prominent circular plain thirty miles in diameter in Section No. 8. The intrusion of a small circular plain has disfigured its circular wall. A small crater has thrust itself in on the eastern side of this plain.
Worksheet Number Twelve Worksheet Number Fifteen. Amicable Numbers and thabit ibn qurra. We have seen thePythagorean concepts of perfect and amicable numbers earlier in this course. http://www.math.neu.edu/~gilmore/U201sp04files/201WS15.htm
Extractions: Worksheet Number Fifteen Amicable Numbers and Thabit ibn Qurra We have seen the Pythagorean concepts of perfect and amicable numbers earlier in this course. The last theorem in book IX of Euclid, Theorem IX.36 states that if is a prime number then is a perfect number. Examples are 6, 28, 496 and 8,128. This is the pinnacle of ancient Greek number theory. The only amicable numbers known to the ancient Greeks were 220 and 284. To find some formula similar to the one in Euclid, but for amicable numbers, must occur to some students of number theory. A successful such mathematician was Thabit ibn Qurra , who grew up in Harran, in what is now Turkey, and lived from about 836 to 901. He ended up being the court astronomer in Baghdad. ThabitÕs theorem giving a formula to construct infinitely many pairs of amicable numbers is the following: Theorem and have the property that are prime numbers. Then a = and are amicable numbers, with a an abundant number and b a deficient number. An abundant number has the sum of its proper divisors bigger than the number, like 12. A deficient number has thee sum of its divisors smaller than the number, like 9.
History Of Mathematics: Arabic Mathematics Habas alHasib (c. 850); thabit ibn qurra (836 -901); al-Fadl al-Nayrizi(c. 880); Abu Kamil ibn Aslam (c. 850-930); Qusta ibn Luka (d http://aleph0.clarku.edu/~djoyce/mathhist/arab.html
Extractions: Arabic Mathematics This page is under development. Banu Musa (sons of Musa ibn Shakir) (ninth century) al-Hajjaj ibn Matar (c. 800) Muhammad ibn Musa Al-Khwarizmi (c. 780-c. 850) Hunayn ibn Ishaq (Johannitius) (808-873) `Abd al-Hamid ibn Turk (c. 850) Ahmad ibn `Abdullah al-Marwazi Habas al-Hasib (c. 850) Thabit ibn Qurra (836 -901) al-Fadl al-Nayrizi (c. 880) Abu Kamil ibn Aslam (c. 850-930) Qusta ibn Luka (d. 912) Abu `Abdallah Mohammad ibn Jabir al-Battani (Albatenius) (c. 858-929) Abu Nasr al-Farabi (Alpharabius) (c. 878-c. 950) Ibrahim ibn Sinan (909-946) Abu Sahl al-Kuhi (c. 950) Abu l'Hasan al-Uqlidisi (c. 952) `Abd al-`Aziz al-Qabisi (c. 950) Muhammad Abu l'Wafa (Albuzjani) (940-998) Abd al-Jalil al-Sijzi (c. 970) Abu `Ali al-Hasan ibn al-Haytham (Alhazen) (c. 965-1039) Abu l-Rayhan Muhammad ibn Ahmad al-Biruni (973-1055) Abu Bakr al-Karaji (al Karkhi) (c. 1000) Abu `Abdallah al-Hasan ibn al-Baghdadi (c. 1000) Kushyar ibn Labban (c. 1000) Maslama al-Majriti (c. 1000) Abu Nasr Mansur ibn Iraq (d. 1030) Abu Mansur al-Baghdadi (c. 1025)
Sar-Sc: Positive Atheism's Big List Of Quotations a few glorious names without contemporary equivalents in the West Jabir ibn Haiyan,alKindi, al-Khwarizmi, al-Fargani, al-Razi, thabit ibn qurra, al-Battani http://www.positiveatheism.org/hist/quotes/quote-s1.htm
Extractions: Lyman Sargent Contemporary World Ideologies (1969), quoted from Laird Wilcox, ed., " The Degeneration of Belief " The history of American education would have been much different without New Harmony and other secular communities that emphasized education. Many of the people who joined these communities wanted to better educate themselves and their children, and they wanted to educate the outside world by their example. At the base of these communitarian ideals was a form of environmental determinism combined with the belief that people would choose to change to improve themselves, their children, and their environment. Members believed that intentional communities could provide a better life than could be achieved through private ownership and competition. Even with the high failure rate and the personal struggles involved, many communitarians continued to believe in cooperative lifestyles.
Pour La Science. -L infini en Chine. -thabit ibn qurra et l infini numérique. http://www.teleologie.org/OT/deboard/5128.html
Extractions: -L'infiniment petit en physique. [ C'est dans cet article à la page 119 qu'est dit : "On ignore encore pourquoi la nature semble apprécier le chiffre trois" et en est illustré son rôle particulier. Peut-être le french Doktor Sanchez a-t-il une réponse ? Sinon, il faudra attendre - quand même pas 20 ans ! - celle du sturm Doktor Weltfaust].
Tank You -L infini en Chine. -thabit ibn qurra et l infini numérique. http://www.teleologie.org/OT/deboard/5130.html
Extractions: Follow Ups Post Followup debord of directors FAQ Posted by e. K. on February 09, 2001 at 03:51:57 PM EST: In Reply to: Pour la science. posted by Dr. W on February 08, 2001 at 07:46:28 PM EST: : Il s'agit du numéro spécial de "Pour la science" [ édition française de "Scientific american" ] de décembre 2000. : -L'infiniment petit en physique. [ C'est dans cet article à la page 119 qu'est dit : "On ignore encore pourquoi la nature semble apprécier le chiffre trois" et en est illustré son rôle particulier. Peut-être le french Doktor Sanchez a-t-il une réponse ? Sinon, il faudra attendre - quand même pas 20 ans ! - celle du sturm Doktor Weltfaust].
SearchBug Directory: Science: Math: History: People AlSabi thabit ibn qurra al-Harrani - http//www-gap.dcs.st-and.ac.uk/~history/Mathematicians/thabit.htmlGives information on background and contributions to http://www.searchbug.com/directory.aspx/Science/Math/History/People/
Al-Marja.com thabit ibn QURRAH (THEBIT) (836 901 CE). thabit ibn Qurrah, known inthe West as Thebit, is known for his work on mechanics, astronomy http://www.muslimtents.com/almarja/qurra.html
Extractions: Shahadah Prayer Fasting Zakah ... Qurrah (Thebit) THABIT IBN QURRAH (THEBIT) (836 - 901 C.E.) Thabit ibn Qurrah, known in the West as Thebit, is known for his work on mechanics, astronomy, pure mathematics and geometry. Thabit ibn Qurrah ibn Marwan al-Harrani was born in 836 C.E. at Harran (present Turkey) and died in Baghdad in 901 C.E. He joined the scientific team of the great Muslim mathematician Muhammad Ibn Musa Ibn Shakir at Baghdad, which was established by the Abbasid Caliphs. Thabit was a pioneer in extending the concept of traditional geometry to geometrical algebra and proposed theories that led to the development of non-Euclidean geometry, spherical trigonometry, integral calculus and real numbers. He used arithmetic terminology to study several aspects of conic sections (parabola and ellipse). His algorithm for computing the surface area and volume of solids is in fact what we came to know later as the integral calculus. Thabit's original work on Mechanics and Physics involves examining conditions of equilibrium of bodies, beams and levers. Some historians have recognized him as the Founder of Statics. He was among the early critics of Ptolemaic views on astronomy. He also criticized several theorems of Euclid's elements and proposed important improvements. Thabit added the ninth sphere to Ptolemic astronomy. Some early investigators criticized his work on 'Trepidation of Equinoxes' and several centuries later Tycho Brahe (1546-1601) improved upon his work.
Beth Mardutho: About The Syriac Language In addition to translating and revising the translations of others, many translatorsgraduated at his hands. Another translator is thabit ibn qurra (d. 901). http://www.bethmardutho.org/aboutsyriac/civilization/
Extractions: You are here: Beth Mardutho About The Syriac Language Part of World Civilization Navigate: Origins of Syriac Early Literature Golden Age Part of World Civilization ... Today World civilization passes from one region to another, and from one language to another, by contact. If we are to trace the history of any field of science, we begin with the ancient Mesopotamians and Egyptians, moving to the Greeks and Romans, then to the Arabs, ending up in Western Europe (not to underestimate the civilizations of Asia and South America). One stop in this journey is almost always forgotten: the Syriac contribution! From the 4th century onward, the Greek sciences were translated into Syriac, including philosophy, logic, medicine, mathematics, astronomy and alchemy. When the Arabs desired to transmit the Greek sciences into Arabic during the 8th and 9th centuries, they turned to their Syriac subjects to do the task. In most cases, these Syriac scholars translated the works first into their native language then into Arabic. As a result, many of the Arabic scientific terminology, including the names of plants, are rooted in Syriac. Scientific works and terminology from other cultures, such as Persian and Indian, passed to Arabic via Syriac; a noted example is the name of the chemical element Zirconium (via Syriac
Uczony Heretyk - Nowinki Matematyczne - Wirtualny Wszech¶wiat Tabit ibn qurra (ok. 826901). Dokladna data urodzin Tabita ibn Qurry (Thabitibn qurra) nie jest znana; miesci sie w przedziale lat 824-836. http://www.wiw.pl/nowinki/matematyka/200102/20010219-001.asp
Extractions: W iw.pl Na bie¿±co: I nformacje C o nowego Matematyka i przyroda: A stronomia B iologia ... odelowanie rzeczywisto¶ci Humanistyka: F ilozofia H istoria ... ztuka Czytaj: B iblioteka D elta ... ielcy i wiêksi Przydatne: S ³owniki C o i gdzie studiowaæ ... szech¶wiat w obrazkach Jeste¶ tutaj: Wirtualny Wszech¶wiat Informacje Nowinki 2000-2002 Matematyka Jeste¶ tutaj nowinka: Tabit Ibn Qurra (ok. 826-901) Dok³adna data urodzin Tabita Ibn Qurry (Thabit ibn Qurra) nie jest znana; mie¶ci siê w przedziale lat 824-836. Wiadomo natomiast, ¿e Tabit pochodzi³ z Harranu w Górnej Mezopotamii (obecnie Turcja), gdzie podobno w m³odo¶ci para³ siê wymian± pieniêdzy. Miasto to by³o o¶rodkiem kultu astralnego: cz³onkowie tamtejszej sekty sabijczyków utrzymywali, ¿e jako pierwsi uprawiali ziemiê, budowali miasta i... rozwinêli naukê. Dzieje Harranu tak siê potoczy³y, ¿e jego mieszkañcy przyswoili sobie jêzyk grecki w epoce hellenistycznej, a po podboju przez Arabów - arabski, zachowuj±c jednak ojczysty aramejski wraz z religi± przodków. Niemniej wolnomy¶licielskie pogl±dy Tabita sprawi³y, ¿e popad³ w konflikt z sabijczykami i opu¶ci³ Harran. Wêdruj±c spotka³ na swej drodze matematyka Muhammada Ibn Musê Ibn Shakira (jednego ze s³ynnych trzech braci Banu Musa), na którym g³êbia wiedzy matematycznej i filozoficznej Ibn Qurry, jak równie¿ jego bieg³o¶æ w jêzykach wywar³y olbrzymie wra¿enie. Muhhamad zaprosi³ go do Bagdadu, gdzie pod rz±dami dynastii Abbasydów rozkwita³a nauka. Najwybitniejszym jej patronem by³ kalif Al-Mamun, który za³o¿y³ Dom M±dro¶ci (
Biography-center - Letter Q Eugene www.whonamedit.com/doctor.cfm/1105.html; qurra, thabit ibnwwwhistory.mcs.st-and.ac.uk/~history/Mathematicians/thabit.html. http://www.biography-center.com/q.html
Extractions: random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish 20 biographies Qalasadi, Abu'l al-
Sciences Et Savoirs mois de Galien, desa traduction par Hunayn B. Ishâq et de son commentaire par thabit B. qurra. http://www.lib-avicenne.com/Sciences.htm
The Mathematics Of Islam, Part 2 In this lecture, the topics consisted of alKhwarizmi (750-850), thabit ibnQurra (830-890), Abu-Sahl al-Kuhi (early 900s), ibn al-Haytham (965-1039 http://public.csusm.edu/public/DJBarskyWebs/330CollageOct01.html
Teoremadepitagoras Translate this page La segunda escena se basa en la demostración que Meavilla (1989) atribuye a ThabitIbn qurra, matemático árabe del s.IX y se caracteriza por ser el puzzle http://www.cnice.mecd.es/eos/MaterialesEducativos/mem2002/geometria_triangulo/te
Extractions: Teorema de Pitágoras E n un triángulo rectángulo, la suma de los cuadrados de los catetos (b y c) es igual al cuadrado de la hipotenusa (a): a =b +c Los números a b y c que verifican esta relación se llaman ternas pitagóricas o números pitagóricos en alusión al estudio que de ellos hicieron Pitágoras y sus discípulos. Los antecedentes históricos de este teorema se remontan a las civilizaciones babilónica y egipcia en el segundo milenio a.J.C. El papiro Rhind y el de Moscú confirman la existencia de tablas de número pitagóricos en esa época. Tras las inundaciones del Nilo, los agrimensores egipcios construían triángulos rectángulos de catetos 3 y 4 y de hipotenusa 5, mediante una cuerda de 12 nudos para parcelar el terreno. Euclides demuestra el Teorema de Pitágoras en la proposición 47 del Libro I de los Elementos En los triángulos rectángulos el cuadrado sobre el ángulo opuesto al ángulo recto es equivalente a los cuadrados sobre los lados que forman el ángulo recto En la proposición 48 demuestra que si el cuadrado construido sobre uno de los lados de un triángulo es equivalente a los cuadrados, juntos, de los otros dos lados, el ángulo formado por esos dos lados es recto, es decir, el recíproco de la Proposición 47.
Extractions: Ibazizen Augustin Ibn Abd Al Wahhad Ibn Abi Taleb Imam Ali Ibn Abi Zayd Al-Qayrawani La Risala (dogme de l'islam selon le rite malekite-bilingue) Ibn Abi Zayd Al-Qayrawani La Risala (dogme de l'islam selon le rite malekite-bilingue) Ibn Al Baytar,trad.Lecler Ibn Al Farid (Omar) La grande Taiyya : la voie mystique Ibn Al Faridh Omar L'Eloge du vin (trad.Dermenghem) Ibn Al Zayyat al Tadili Regards sur le temps des Soufis:Sud marocain V-VI-VIIs.Hegir Ibn al-Jawzi Ibn Al-Muqaffa Abdallah Le livre de Kalila et Dimna Ibn Al-Muqaffa Abdallah Le pouvoir et les intellectuels:aventures de Kalila et Dimna Ibn Arabi La profession de foi Ibn Arabi L'Alchimie du bonheur parfait Ibn Arabi Ibn Arabi L'Arbre du monde Ibn Arabi Le livre de l'arbre et des quatre oiseaux Ibn Arabi Les Soufis d'Andalousie Ibn Arabi Ibn Arabi Ibn Arabi Le livre d'enseignement par les formules indicatives... Ibn Arabi Le Livre de l'extinction dans la contemplation Ibn Arabi Ibn Arabi Les Illuminations de la Mecque Ibn Arabi Ibn Arabi La parure des Abdal Ibn Arabi Ibn Arabi Ibn Arabi Le voyage spirituel Ibn Arabi Les Soufis d'Andalousie,la vie merveilleuse de Dhu-l-Nun
CONTENTS The summary for this Arabic page contains characters that cannot be correctly displayed in this language/character set. http://www.ias-worldwide.org/contents_noble.htm
Extractions: Academy Publishes " Personalities Noble" CONTENTS Abu Abdullah al-Battani Abu Raihan al-Biruni Abu Wafa Muhammad al-Buzjani Abu al-Naser al-Farabi Al-Farghani Abu Hamid al- Ghazali Al- Idrissi Ibn al-Bitar Abu Ali Hassan Ibn al-Haitham Ibn Al-Nafis Ibn Khaldun Ibn Rushd Ibn Sina Abu Marwan Ibn Zuhr Jabir Ibn Haiyan Mohammad Bin Musa al-Khawarizmi Omer al-Khayyam Yaqub Ibn Ishaq al-Kindi Abu al-Hassan Ali al-Mas'udi Abu al-Hassan al-Mawardi Mohammad Ibn Zakariya al- Razi Jalal Al- Din Rumi Ali Ibn Rabban al-Tabari Thabit Ibn Qurra Nasir al-Din al- Tusi Abu al-Qasim al-Zahrawi