Biografisk Register Translate this page 1560-1621) Hausdorff, Felix (1868-1942) Heath, Thomas Little (1861-1940) heawood,percy John (1861-1955) Heeger, Kurt Heiberg, Johan Ludvig (1854-1928 http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm
Full Alphabetical Index Translate this page Douglas (436*) Hasse, Helmut (1189*) Hausdorff, Felix (345*) Hawking, Stephen (1282*)Heath, Thomas (199*) Heaviside, Oliver (1209*) heawood, percy (596*) Hecht http://www.geocities.com/Heartland/Plains/4142/matematici.html
À§´ëÇѼöÇÐÀÚ ¸ñ·Ï 18 May 1850 in Camden Town, London, England Died 3 Feb 1925 in Paignton, Devon,England heawood, percy John heawood Born 8 Sept 1861 in England Died 24 Jan http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=H
Colorful Mathematics: Part III Although percy heawood was unable to solve the fourcolor problem, he did givea complete solution to a special case of a nifty question of this kind. http://www.ams.org/new-in-math/cover/colour3.html
Extractions: From its "humble" beginnings of addressing the number of colors needed to color a plane map, the theory of colorings has branched out in a staggering number of directions. We have already seen that in addition to coloring the faces of a plane graph, it is worthwhile to investigate the coloring of the vertices and the edges of any graph. Here is a sample of the many directions in which one can extend the theory of coloring. Not all geographic maps fall under the coloring framework which we have looked at: A single country can have two separate parts (e.g., the former East and West Pakistan). If one wishes to adopt the rule that both parts of a single country should get the same color, we have a different problem from the four-color problem. Although Percy Heawood was unable to solve the four-color problem, he did give a complete solution to a special case of a nifty question of this kind. Using modern terminology, call a map drawn in the plane a k-pire map if there are "empires"
More Mathematicians In UK Directory: Library: Mathematicians heawood, percy John History of Mathematics Read about the life and workof this English mathematician noted for his four colour theorem. http://www.ukdirectory.co.uk/Dir/?Category=705569,44539,44548,904631,10035914&Pa
Mathem_abbrev Paul Hamilton, William R Hardy, GH Hasib Abu Kamil al Hasse, Helmut Hawking, StephenHaytham, Abu Ali al Heaviside, Oliver, heawood, percy Heisenberg, Werner http://www.pbcc.cc.fl.us/faculty/domnitcj/mgf1107/mathrep1.htm
Extractions: Mathematician Report Index Below is a list of mathematicians. You may choose from this list or report on a mathematician not listed here. In either case, you must discuss with me the mathematician you have chosen prior to starting your report. No two students may write a report on the same mathematician. I would advise you to go to the library before choosing your topic as there might not be much information on the mathematician you have chosen. Also, you should determine the topic early in the term so that you can "lock-in" your report topic!! The report must include: 1. The name of the mathematician. 2. The years the mathematician was alive. 3. A biography. 4. The mathematician's major contribution(s) to mathematics and an explanation of the importance. 5. A historical perspective during the time the mathematician was alive.
The Mathematical Gazette Index For 1894 To 1908 percy J.heawood, On pairs of imaginary roots, p. 31, Feb 1895, MNote 10. percyJ.heawood, On a solution in (Math. Gaz.) No. 2, p. 31, Feb 1895, MNote 11. http://www.wpr.aaugonline.net/gazette/1894-08.html
Extractions: AUTHOR TITLE PAGE Issue Category C.W.Adams Stability of cube floating in liquid p. 388 Dec 1908 MNote 285 V.Ramaswami Aiyar Extension of Euclid I.47 to -sided regular polygons p. 109 June 1897 MNote 41 V.Ramaswami Aiyar On a fundamental theorem in inversion p. 88 Oct 1904 MNote 153 V.Ramaswami Aiyar On a fundamental theorem in inversion Jan 1906 MNote 183 V.Ramaswami Aiyar Note on a point in the demonstration of the binomial theorem p. 276 Jan 1906 MNote 185 V.Ramaswami Aiyar Note on the power inequality p. 321 May 1906 MNote 192 V.Ramaswami Aiyar On the exponential inequalities and the exponential function p. 8 Jan 1907 Article V.Ramaswami Aiyar The A, B, C of the higher analysis p. 79 May 1907 Article V.Ramaswami Aiyar On Stolz and Gmeiner's proof of the sine and cosine series p. 282 June 1908 MNote 259 V.Ramaswami Aiyar A geometrical proof of Feuerbach's theorem p. 310 July 1908 MNote 264 A.O.Allen On the adjustment of Kater's pendulum p. 307 May 1906 Article A.O.Allen Notes on the theory of the reversible pendulum p. 394 Dec 1906 Article Anonymous Proof of a well-known theorem in geometry p. 64
The Mathematical Gazette Index For 1909 To 1919 percy J.heawood, Complaint about an exam question, MNote 344, Oct 1911, p.151. percy J.heawood, Concerning Euclid s axioms, MNote 345, Oct 1911, p.152. http://www.wpr.aaugonline.net/gazette/1909-19.html
Extractions: AUTHOR TITLE PAGE Issue Category P.Abbott The position of mathematics in educational reconstruction Article Mar 1917 p. 33 C.W.Adams The area of "borders" MNote 396 May 1913 p. 109 C.W.Adams Resolution of a problem that would lead to a paradox MNote 457 Dec 1915 p. 179 Aleph A possible exam question for the "pillory" Letter May 1910 p. 280 A.O.Allen Note on the construction of string models MNote 447 May 1915 p. 86 S.Andrade Finding assuming only the formula for the sum of an A.P. MNote 312 Mar 1910 - Part I p. 206 S.Andrade New proof of the homographic property of a conic MNote 371 Mar 1912 p. 286 S.Andrade Proof that two ranges are homographic MNote 422 July 1914 p. 361 A.H.Anglin On a certain form of definite integral MNote 308 Jan 1910 p. 187 Anonymous The solution of the equation MNote 320 Oct 1910 p. 334 Anonymous A superior method for finding for any polynomial MNote 323 Oct 1910 p. 335 Anonymous Graphical solution of a biquadratic MNote 326 Oct 1910 p. 336 Anonymous ('W.F.') On note 362, p 221, Vol VI MNote 400 May 1913 p. 111 Anonymous Required, an explanation of the figure MNote 410 July 1913 p. 152
Operations Research Authors Translate this page Hansen, Pierre Hanson, Denis Hao, Jin-Kao Harant, Jochen Harris, AJ Hassin, RefaelHattori, Y. Haynes, Thomas Hearn, Donald W. heawood, percy John Hell, Pavol http://www.iro.umontreal.ca/~stlouip/authors.html
ThinkQuest : Library : A Taste Of Mathematic Conjecture in 1890. percy John heawood, a lecturer at Durham England,published a paper called Map colouring theorem. In it he states http://library.thinkquest.org/C006364/ENGLISH/problem/four.htm
Extractions: Index Math Welcome to A Taste of Mathematics.You will find the taste of mathematics here.The history of Mathematics,famous mathematicians,cxciting knowledge,the world difficult problems and also mathematics in our life... Browsing,thinking,enjoying,and have a good time here! Visit Site 2000 ThinkQuest Internet Challenge Languages English Chinese Students fangfei Beijing No.4 High School, Beijing, China ziyan Beijing No.4 High School, Beijing, China Coaches Tife Zesps3 Szks3 Ogslnokszta3c9cych Numer 1, Beijing, China xueshun Beijing No.4 High School, Beijing, China Want to build a ThinkQuest site? The ThinkQuest site above is one of thousands of educational web sites built by students from around the world. Click here to learn how you can build a ThinkQuest site. Privacy Policy
Cayley année où un de ses compatriotes, percy John heawood (1861-1955), relève http://www.sciences-en-ligne.com/momo/chronomath/chrono1/Cayley.html
Extractions: Galois Cauchy ... Jordan puis Klein et Lie C'est à Frobenius que l'on doit (1878) la démonstration rigoureuse de ce théorème. K l l P( l ) = det( l I - M Les valeurs propres Frobenius Matrice d'un endomorphisme : : M - 3M - I = 0. Valeurs propres, vecteurs propres : Le théorème des 4 couleurs, une application de la théorie des graphes : clic on the map... Une preuve donnée en 1879 par le mathématicien anglais Alfred Bray Kempe (1849-1922) fut considérée comme juste jusqu'en 1890, année où un de ses compatriotes, Percy John Heawood (1861-1955), relève une erreur. Reprenant la démonstration de Kempe, Heawood montre que 5 couleurs suffisent. La preuve de la conjecture demande des connaissances approfondies en Pour en savoir (beaucoup) plus : http://www.univ-lr.fr/formations/idea/duCultureMath/graphes/
Www.mathematik.de | Diskrete Mathematik Translate this page Eugen Netto, Alfred Kempe, percy heawood, Kazimierz Kuratowski, KarlMenger. Wie bereits oben erwähnt, ist die Diskrete Mathematik als http://mathematik.de/mde/information/landkarte/gebiete/diskretemathematik/diskre
Web A kvaterniók elmélete alapján fejlesztette ki Grassmann az ndimenziósvektor fogalmát. heawood, percy John (1861-1955). Ipswich http://www.jgytf.u-szeged.hu/tanszek/matematika/speckoll/1998/geometria/web.htm
Untitled Document But in 1890, percy heawood, an Oxford eccentric known for his immense mustache andflowing cape, produced a map that showed that one of Kempe s chains didn t http://www.jaschahoffman.com/articles/globescience/ittakesfour.html
Extractions: IT TAKES FOUR The Strange Career of a Cartographic Conjecture math why not five? by Jascha Hoffman Boston Globe SCIENCE / May 13, 2003 Here's a problem Lewis Carroll enjoyed posing to kids like Alice: how many colors do you need to fill in any map so that neighboring countries are always colored differently? It sounds simple enough. But when a Victorian law student first posed the question, guessing that it could be done with a mere four colors, logician Augustus De Morgan was stumped. While no one could devise a map that required more, a proof that every map requires only four colors proved remarkably elusive. Mapmakers didn't care, but problem-solvers were obsessed for decades, including the Bishop of London, a Kentucky colonel, and a California traffic cop. The question's very intractability has inspired innovations in computing and network theory, but some say it still has no satisfying solution. Oxford professor Robin Wilson's Four Colors Suffice: How the Map Problem was Solved (Princeton: 2003) presents the colorful history of this conjecture, with an unassuming lucidity that will appeal to the mathematical novice. It's thrilling to see great mathematicians fall for seductively simple proofs, then stumble on equally simple counter-examples. Or swallow their pride: after telling his class that the problem had been wasted on third-rate minds, the great number-theorist Herman Minkowski took weeks at the blackboard trying to solve it, finally admitting, "Heaven is angered by my arrogance; my proof is also defective."
The Four Colour Theorem percy John heawood, a lecturer at Durham England, published a papercalled Map colouring theorem. In it he states that his aim is http://physics.rug.ac.be/Fysica/Geschiedenis/HistTopics/The_four_colour_theorem.
Extractions: The Four Colour Conjecture first seems to have been made by Francis Guthrie . He was a student at University College London where he studied under De Morgan . After graduating from London he studied law but by this time his brother Frederick Guthrie had become a student of De Morgan . Francis Guthrie showed his brother some results he had been trying to prove about the colouring of maps and asked Frederick to ask De Morgan about them. De Morgan was unable to give an answer but, on 23 October 1852, the same day he was asked the question, he wrote to Hamilton in Dublin. De Morgan wrote:- A student of mine asked me today to give him a reason for a fact which I did not know was a fact - and do not yet. He says that if a figure be anyhow divided and the compartments differently coloured so that figures with any portion of common boundary line are differently coloured - four colours may be wanted, but not more - the following is the case in which four colours are wanted. Query cannot a necessity for five or more be invented. ...... If you retort with some very simple case which makes me out a stupid animal, I think I must do as the Sphynx did.... Hamilton replied on 26 October 1852 (showing the efficiency of both himself and the postal service):- I am not likely to attempt your quaternion of colour very soon.
Extractions: HOVERFLY-2 INDOOR HELICOPTER Hoverfly is a great little helicopter. It comes attractively finished and ready to fly. Its small, tough and quiet - and it flies indoors. Yet it handles just like its bigger brothers. You have a web site and you want to earn money, then click here. We recommend you the Otherlandtoys.co.uk, Commission Junction Program
Z Historie Matematiky A Fyziky (3) ctyrech barvách. percy John heawood, prednáející v Durhamu,publikoval clánek nazvaný Map colouring theorem . Uvádí v http://www.gymtc.cz/natura/2001/8/20010805.html
Extractions: zpracovali: Jiøí Svrek, Roman Barto Typografické poznámky k matematickým vztahùm jsou uvedeny na konci tohoto textu. 9. Problém ètyø barev Problém ètyø barev pochází od Francise Guthrieho , který byl studentem na University College v Londýnì, kde studoval u De Morgana . Po dokonèení studia zaèal studovat práva, ale jeho bratr Frederick Guthrie se stal také studentem u De Morgana. Frederick Guthrie nejprve vykonával praxi obhájce a v roce 1861 odejel do Jiní Afriky jako profesor matematiky. Zde publikoval nìkolik matematických èlánkù a zaèal se zajímat o botaniku. Jeden druh vøesu [Erica Guthriei] byl pojmenován po nìm. V dobì, kdy Frederick jetì studoval u De Morgana, jeho bratr mu ukázal nìkteré výsledky své práce a také ho poádal, aby ze De Morgana zeptal na monost dùkazu problému ètyø barev. De Morgan na domnìnku o ètyøech barvách neznal odpovìï, ale 23. øíjna 1852 zaslal dopis Hamiltonovi do Dublinu. Domnìnka o ètyøech barvách spoèívá v následující úloze. Libovolný obrazec je rozdìlen na èásti a kadá èást má být obarvena jednou ze ètyø barev tak, aby se na spoleèné hranici èástí nevyskytovaly dvì stejné barvy. De Morgan zaslal nìkolika matematikùm dotaz, zda by nebyli ochotni zabývat se øeením problému ètyø barev.
Natura Guido Fubini. Kurt Gödel. Jacques Salomon Hadamard. Hans Hahn. PhilipHall. Felix Hausdorff. Stephen William Hawking. percy John heawood. http://www.gymtc.cz/natura/2003/3/200303.html
Extractions: èíslo 3/2003 Pøedstavujeme... Obèanské sdruení Ulice Plzeò. Podle materiálù sdruení zpracoval: Jiøí Svrek. Obèanské sdruení Ulice Plzeò se zabývá terénní sociální prací (anglicky "streetwork"), která spoèívá v kontaktování klientù a poskytování slueb sociální práce, terapie, poradenství a slueb "Harm Reduction" (omezení zdravotního a sociálního pokození) v terénu. Státní bezpeènost - èeskoslovenské Gestapo. Podle knihy Karla Kaplana "StB o sobì" zpracoval: Jiøí Svrek. Komunistický reim se svými dùsledky pro obèanskou spoleènost podobal nacistickému reimu v Nìmecku a státní bezpeènost se svými metodami podobala Gestapu. Politické procesy a Státní bezpeènost. Masová nezákonnost. Poèáteèní období komunistického reimu v Èeskoslovensku. "Výroba" politických procesù. Americký národní raketový obranný systém. (1) Podle studie Union of Concerned Scientists zpracoval: Jiøí Svrek. - Souhrnná zpráva: Klíèové problémy plánovaného systému. Americká ochrana pøed útokem balistickými raketami. Existující a neurèité hrozby útoku balistickými raketami na Spojené státy (Náhodný, neautorizovaný nebo mylný útok z Ruska. Náhodný, neautorizovaný, mylný nebo úmyslný útok z Èíny. Hrozba nespolehlivých státù. Hlavice dostupné nespolehlivým státùm.). Významní matematikové v historii. (14)
Lebensdaten Von Mathematikern Translate this page 1898 - 1979) Hausdorff, Felix (8.11.1868 - 26.1.1942) Heath, Thomas (1861 - 1940)Heavisde, Oliver (1850 - 1925) heawood, percy (1861 - 1955) Hecht, Daniel http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
Extractions: Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
Mod 3 Arithmetic On Triangulated Riemann Surfaces 562. 13 L. Comtet, Advanced Combinatorics, Reidel, Dodrecht, 1974. 14 GADirac, percy John heawood, J. London Math. Soc. 38 (1963) 263-277. http://portal.acm.org/citation.cfm?id=500537&jmp=abstract&dl=GUIDE&dl=GUIDE&CFID