(Bernard Gergonne - Joseph Heidmann ) Translate this page Wendling - Gustave Honoré Zurcher ) PRÉCÉDENT (Antoine Bartholomé ? Wendling- Bernadette gergonne ) SUIVANT (joseph Heidmann - François joseph Heitmann ). http://perso.club-internet.fr/thierry.heitmann/heidmann/ind0002.html
El Punto De Gergonne Translate this page El punto de gergonne (joseph Diaz gergonne, 1771-1859) aparece al unir los vérticesde un triángulo con los puntos de tangencia de su circunferencia inscrita http://www.ctv.es/USERS/pacoga/bella/htm/gergonne.htm
Fichero Creado Por Juntahtm Translate this page El punto de gergonne (joseph Diaz gergonne, 1771-1859) aparece al unir los vérticesde un triángulo con los puntos de tangencia de su circunferencia http://www.ctv.es/USERS/pacoga/bella/htm/juntos.htm
Extractions: Teoremas Elementos Construcciones Conceptos Teoremas Brianchon Ceva Desargues Menelao ... Varignon Elementos Circunferencia de los Nueve Puntos Circunferencias de Apolonio Recta de Euler Punto de Fermat ... Rectas de Wallace-Simson Construcciones Problema de Apolonio Problema de Malfatti Conceptos: Elementos de Euclides Libro I de los Elementos Conceptos sobre circunferencias Enlaces
Joseph Liouville paar jaar van zijn leven door een oom was opgevoed, ging joseph naar school in vandat moment Annales de Mathématiques Pures et Appliquèes van gergonne 1 en http://www.desda.sci.kun.nl/home/~grooten/wiskunde/liouville/
Extractions: Nadat hij de eerste paar jaar van zijn leven door een oom was opgevoed, ging Joseph naar school in Toul, waar hij met name les in klassieke talen kreeg. Vervolgens ging hij naar Parijs, om aan het lessen in wiskunde te krijgen. Al tijdens zijn schooltijd las hij het enige Franse wiskundetijdschrift van dat moment van Gergonne en naar aanleiding van een artikel over Euclidische meetkunde in dit blad, bedacht hij, slechts vijftien jaar oud, zelf enige stellingen. Hij stuurde deze ook op naar Gergonne, maar ze werden nooit gepubliceerd. De jonge Liouville had al jong besloten professioneel wiskundige te worden en hij deed dan ook toelatingsexamen voor de . Dit was eigenlijk een school die ingenieurs voor het leger opleidde, maar het wis- en natuurkundig niveau lag zo hoog dat het voor aanstaand wiskundigen welhaast verplicht was hier te studeren. Liouville slaagde voor toelatingsexamen en betrad in 1825 de school, waar op dat moment onder meer Cauchy les gaven. Van Cauchy kreeg Liouville geen les, maar omdat Cauchy op dat moment een van de belangrijkste Franse wiskundigen was, had hij zeker veel invloed op de jonge Liouville. Liouville was een goede leerling, zij het niet de beste van de school
Extractions: ... Bourg-la-Reine XVIII Onder de naam Lodewijk XVII is de zoon van Lodewijk XVI XVII te zijn. ... Hermite Charles Hermite (1822-1901), Frans wiskundige ... Serret Joseph-Alfred Serret (1819-1885), Frans wiskundige ... Gergonne Joseph Diez Gergonne (1771-1859), Frans wiskundige ... Abel Noors wiskundige (1802-1829), meer over Abel in mijn artikel in de Volgens Bartjens van oktober 1998 ... Cauchy Augustin Louis Cauchy (1789-1857), Frans wiskundige Cauchy produceerde tijdens zijn leven maar liefst 789 artikels Deze school was tijdens de revolutie onder de naam opgericht, na 1831 zou zij haar oude naam weer terugkrijgen ... Saint-Simonisme Voorloper van het socialisme, genoemd naar Claude-Henry de Rouvroy, graaf van Saint-Simon (1760-1826) ... Fourier Joseph Fourier (1768-1830), Frans wiskundige ... Poisson ... Poterin-Dumotel ... L.D. De volledige naam is onbekend ... Gauss Karl Gustav Jacob Jacobi (1804-1851) en Carl Friedrich Gauss (1777-1855), twee vooraanstaande Duitse wiskundigen ... Liouville Joseph Liouville (1809-1882), Frans wiskundige Voor degenen die mijn stukjes wat aan de lange kant vinden: merk op dat Abel, Riemann en Galois respectievelijk 26, 39 en 20 jaar oud werden. Weierstrass werd 81...
Extractions: edit G2 (mathematics) G-delta set Gabriel's horn Galilean transformation ... edit H infinity H-principle H-space Haar integral ... edit IACR Icosagon Icosahedron Icosidodecahedron ... Iwasawa theory Views Personal tools Navigation Search Toolbox What links here Related changes Special pages This page was last modified 14:50, 27 May 2004. All text is available under the terms of the GNU Free Documentation License (see for details).
List Of Mathematicians - Wikipedia, The Free Encyclopedia France, 1776 1831); Jean-Yves Girard (France); Jean Giraud (France);joseph Diaz gergonne (France, 1771-1859); Kurt Gödel, (Austria http://en.wikipedia.org/wiki/List_of_mathematicians
Extractions: edit Abu'l-Wafa (Iran, Niels Henrik Abel (Norway, Abraham bar Hiyya Ha-Nasi Ralph H. Abraham (USA, University of California, Santa Cruz John Couch Adams Robert Adrain (Ireland) Petrus Apianus Cahit Arf (Turkey, Jean-Robert Argand (France, Yoriyuki Arima (Japan, Vladimir Igorevich Arnol'd Wilhelm Ackermann (Germany, Maria Gaetana Agnesi (Italy, Lars Valerian Ahlfors , (Finland, Ahmes , (Egypt, roughly around 17th century BC Yousef Alavi Giacomo Albanese (Italy, Brazil) Jean le Rond d'Alembert (France, Abu Ja'far Muhammad Ibn Musa Al-Khwarizmi (Persia, Alexander Anderson (Scotland, André-Marie Ampere , (France, Apollonius of Perga (Asia Minor, 265 B.C. 170 B.C. Antoine Arbogast (France, Archimedes (Syracuse, 287 B.C. 212 B.C. Aristotle (Greece, 384 B.C. 322 B.C. Vladimir Arnol'd (Russia, Emil Artin (Austria, Michael Artin (USA?, - ) Arzachel (Al-Zarqali) (Muslim Spain
About, Pierre-José (1982-) Lettres VI Translate this page Gérard, Jules (1891-1897) Lettres XXI. gergonne, joseph-Diez (1847-1851)Sciences XII. Gerhardt, Charles-Frédéric (1847-1853) Sciences XX. http://www.biu.univ-montp1.fr/academie/Indexacademiciens.htm
List Of Mathematical Topics (G-I) - Information Geometric standard deviation Geometry Géometrie Algébrique et GéométrieAnalytique Geometry of numbers gergonne, joseph Diaz gergonne point http://www.book-spot.co.uk/index.php/List_of_mathematical_topics_(G-I)
Extractions: Social sciences and philosophy ... D-F G-I J-L M-O P-R S-U ... Mathematicians G2 (mathematics) G-delta set Gabriel's horn Galilean transformation ... Gumbel, Eric H infinity H-principle Haar integral Haar measure ... Hypothesis testing IACR Icosagon Icosahedron Icosidodecahedron ... Iwasawa theory All text is available under the terms of the GNU Free Documentation License (see for details). . Wikipedia is powered by MediaWiki , an open source wiki engine.
List Of Mathematicians - Information France, 1776 1831); joseph Diaz gergonne (France, 1771-1859); KurtGödel, (Austria, USA, 1906 - 1978); Christian Goldbach (Germany http://www.book-spot.co.uk/index.php/List_of_mathematicians
Extractions: The famous mathematicians are listed below in English alphabetical transliteration order (by surname Table of contents: A B C D ... Z Asger H. Aaboe Niels Henrik Abel (Norway, Ralph H. Abraham (USA, University of California, Santa Cruz John Couch Adams Petrus Apianus Jean-Robert Argand (France, Yoriyuki Arima (Japan, Vladimir Igorevich Arnol'd Wilhelm Ackermann (Germany, Maria Gaetana Agnesi (Italy, Lars Valerian Ahlfors , (Finland, Ahmes , (Egypt, roughly around 17th century BC Jean le Rond d'Alembert (France, Abu Ja'far Muhammad Ibn Musa Al-Khwarizmi (Persia, Alexander Anderson (Scotland, André-Marie Ampere , (France, Apollonius of Perga (Asia Minor, 265 B.C. 170 B.C. Antoine Arbogast (France, Archimedes (Syracuse, 287 B.C. 212 B.C. Aristotle (Greece, 384 B.C. 322 B.C. Vladimir Arnol'd (Russia, Emil Artin (Austria, Michael Artin (USA?, - ) Arzachel (Al-Zarqali) (Muslim Spain, Michael Francis Atiyah (Britain
Extractions: GABAIN, Annemarie von GABELENTZ, Hans Conon von der GABELENTZ, Hans Georg Conon von der GAJEWSKI, Herbert ... GAUDRY, Jean-Albert * 17. Jh. GAUSS, Karl Friedrich GAY-LUSSAC, Louis-Joseph GAZIS (GAZES), Anthimos GEBHARDT, Oscar Leopold von ... GLAUCH * 17. Jh. GLEDITSCH, Johann Gottlieb GLUSCHKOW, Viktor Michailowitsch GMELIN, Christian Gottlob GMELIN, Leopold ... GOTTFRIED (GOTHOFREDUS), Georg gt. 26.06.1648 GOTTSCHALDT, Kurt GOTTSCHED, Johann GOTTSCHED, Johann Christoph GOULD, Benjamin Apthorp ... GOYON D'ARZAC, Guillaume-Henri-Charles Vicomte de * um 1740 GRABEN ZUM STEIN, Otto von GRABMANN, Martin GRAEBE, Carl James Peter GRAFF, Eberhard Gottlieb ... GYLLENBERG, Helge Gideon
Transversalen: Ceva Menelaos 1 = 1 De hoektransversalen gaan dus door éen punt, G. Hoewel ook Ceva deze eigenschapkende, heet het punt G het punt van gergonne (joseph gergonne, 1771-1859 http://www.pandd.demon.nl/transvers.htm
Extractions: P Q P R = P Q P R figuur 1 De lijn t is dus de verzameling van de punten die een vaste verhouding v hebben tot de benen van de hoek, mits t binnen de hoek S ligt. Een dergelijke lijn t heet hoektransversaal (in een driehoek ook wel ceviaan genoemd). 2. Concurrente hoektransversalen in een driehoek (cevianen)
Gergonne-punt En -driehoek zijn concurrent. Hun snijpunt heet het punt van gergonne van de driehoek(naar joseph gergonne, 17711859, Frankrijk). Bewijs zie http://www.pandd.demon.nl/gergdrie.htm
Le Point De Gergonne D'un Triangle Translate this page Le point de joseph gergonne (1771-1859). Soit un triangle ABC admettantle point I comme centre du cercle inscrit. Ce cercle inscrit http://www.jlsigrist.com/gergonne.html
À§´ëÇѼöÇÐÀÚ ¸ñ·Ï Born 24 Nov 1909 in Greifswald, Germany Died 4 Aug 1945 in Prague, Czechoslovakiagergonne, joseph Diaz gergonne Born 19 June 1771 in Nancy, France Died 4 http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=G
The Science Bookstore - Chronology 1771 AD, Priestley, J. Plants and carbon dioxide joseph Priestley. gergonne,joseph Diez Born 6/19/1771 Died 5/4/1859, 1771 AD, Trevithick http://www.thesciencebookstore.com/chron.asp?pg=9
Institut De France - Recherche Translate this page de Peinture) GÉRARD (Louis) Classe des Sciences (section de Botanique et Physiquegénérale) Académie des Sciences gergonne (joseph, Diez) Académie des http://www.institut-de-france.fr/franqueville/premier_siecle/rech_premier_g.htm
Ceva's Theorem Then the lines AD, BE and CF intersect at one point. (This is known asthe gergonne point, named after joseph Diaz gergonne (17711859). http://www.cut-the-knot.org/Generalization/ceva.shtml
Extractions: Recommend this site Giovanni Ceva (1648-1734) proved a theorem bearing his name that is seldom mentioned in Elementary Geometry courses. It's a regrettable fact because not only it unifies several other more fortunate statements but its proof is actually as simple as that of the less general theorems. Additionally, the general approach affords, as is often the case, rich grounds for further meaningful explorations. In a triangle ABC, three lines AD, BE and CF intersect at a single point K if and only if (The lines that meet at a point are said to be concurrent Extend the lines BE and CF beyond the triangle until they meet GH, the line through A parallel to BC. There are several pairs of similar triangles: AHF and BCF, AEG and BCE, AGK and BDK, CDK and AHK. From these and in that order we derive the following proportions: AF/FB=AH/BC (*) CE/EA=BC/AG (*) AG/BD=AK/DK AH/DC=AK/DK from the last two we conclude that AG/BD = AH/DC and, hence, BD/DC = AG/AH (*).
The Gergonne Point The gergonne Point, so named after the French mathematician joseph gergonne, isthe point of concurrency which results from connecting the vertices of a http://jwilson.coe.uga.edu/EMT668/EMT668.Folders.F97/Cowart/essay3/gergpoint.htm
Extractions: The Gergonne Point, so named after the French mathematician Joseph Gergonne, is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle. This essay will prove the existence of this point for any triangle, explore its relationship to the Euler line, if any exist, and discuss the possible usefulness of this point. Most geometry students are familiar with the several points of concurrency and the steps necessary to construct such points. These might include some of the following points of concurrency (click for a GSP sketch illustration): perpendicular bisector point of concurrency (circumcenter) angle bisector point of concurrency (incenter) median point of concurrency (centroid) altitude point of concurrency (orthocenter) An illustration of these below: A GSP sketch of the Gergonne Point is shown below.
Gergonne Point Essay 3 gergonne Point. by Anita Hoskins and Crystal Martin. The gergonnePoint was discovered by and named after joseph Diaz gergonne. http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Hoskins/essays/essay2.html
Extractions: Essay 3: Gergonne Point by Anita Hoskins and Crystal Martin The Gergonne Point was discovered by and named after Joseph Diaz Gergonne . The theorem goes as follows: the segments from the vertices of a triangle to the points of tangency of the incircle with the opposite sides of the triangle are concurrent. This point of concurrency is called the Gergonne point. The proof can be done easily by using Ceva's Theorem Proof: See Figure 1 below. Let c1 be the incircle (green) of triangle ABC, and let point I be the center of c1, or incenter of the triangle. Recall that the incenter is the point of concurrency of the angle bisectors (red) of a triangle. Also, that the incircle is formed by constructing lines (blue) through point I perpendicular to the sides of the triangle. The points where these lines intersect the sides of the triangle (points F, D, and E) are the points of tangency of the incircle. Figure 1 Notice triangles AFI and AEI (figure 2). Angle AFI and AEI are both right angles, and angle FAI = angle EAI because of the angle bisector. Since angle AFI = angle AEI, and angle FAI = angle EAI, then angle FIA = angle EIA. The length of side AI = the length of side IA by the reflexive property. Therefore, triangle AFI is congruent to triangle AEI by angle-side-angle congruency. So, AF = AE. Figure 2 The same argument is used to prove that BF = BD, and CD = CE. See figure 3.