The Mathematics Genealogy Project - Index Of DR 1974. Drinen, Douglas, Arizona State University, 1999. drinfeld, vladimir,1978. Driscoll, Bonita, Northwestern University, 1978. Driscoll http://www.genealogy.ams.org/html/letter.phtml?letter=DR
Mathematics Apropos, vladimir Gershonovich drinfeld is the unique Filds Prize laureatein Ukraine. This reward for mathematicians is analogous of Nobel Prize. http://kharkov.vbelous.net/english/mathemat.htm
Extractions: Ìàthematics After creation of Kharkov University (founded in 17th, November, 1804; opened in 29th, January, 1805) "Physical and Mathematical Sciences Department'' became one of its main departments. From the early days there was rather high level of mathematical tuition in it, and in the second half of XIX and at the beginnning of XX century such outstanding persons as A.M.Lyapunov, Imshenetsky, V.A.Steklov , S.N.Bernstein worked at Kharkov. Just these scientists had begun to form Kharkov's image as a city of high mathematical culture. It must be noted, that when we talk about a city with certain cultural and scientific traditions in one or another field, we understand, indeed, that these traditions couldn't appear in blank space. As a rule, they have been created by several outstanding, brightly talented people, which were gathering followers and disciples around themselves. In such a way something is formed that could be named as "Scientific school". And such schools just determine really the image of intellectual center. As to Kharkov, there are three basic mathematical schools formed in it during last 130-140 years: mathematical physics, geometry and fuction theory ones. Works of these school scientist, without any exaggeration, have got recognition throughout in the world, and we are proud of this fact.
Fields Medal Kong 33 1986 Donaldson, Simon Cambridge UK 27 1986 Faltings, Gerd Germany 32 1986Freedman, Michael Los Angeles USA 35 1990 drinfeld, vladimir Kharkov USSR 36 http://db.uwaterloo.ca/~alopez-o/math-faq/mathtext/node19.html
Extractions: Next: Erdos Number Up: Human Interest Previous: Indiana bill sets the This is the original letter by Fields creating the endowment for the medals that bear his name. It is thought to have been written during the few months before his death. Notice that no mention is made about the age of the recipients (currently there is a 40 year-old limit), and that the medal should not be attached to any person, private or public, meaning that it shouldn't bear anybody's name. It is proposed to found two gold medals to be awarded at successive International Mathematical Congress for outstanding achievements in mathematics. Because of the multiplicity of the branches of mathematics and taking into account the fact that the interval between such congresses is four years it is felt that at least two medals should be available. The awards would be open to the whole world and would be made by an International Committee. The fund for the founding of the medals is constituted by balance left over after financing the Toronto congress held in 1924. This must be held in trust by the Government or by some body authorized by government to hold and invest such funds. It would seem that a dignified method for handling the matter and one which in this changing world should most nearly secure permanency would be for the Canadian Government to take over the fund and appoint as his custodian say the Prime Minister of the Dominion or the Prime Minister in association with the Minister of Finance. The medals would be struck at the Mint in Ottawa and the duty of the custodian would be simply to hand over the medals at the proper time to the accredited International Committee.
Autumn 2002 Course Descriptions Math 47000, Geometric Langlands Seminar. Beilinson, Alexander anddrinfeld, vladimir. Beilinson, Alexander and drinfeld, vladimir. http://www.math.uchicago.edu/2002-2003.html
Extractions: Math 34100, Geometric Literacy Farb, Benson This years topics might include: basics of symplectic geometry, harmonic maps in geometry, pseudo-Anosov homeomorphisms and Thurston's compactification of Teichmuller space, algebraic geometry for non-algebraic geometers. Prereq: First year graduate sequence Math 35002, Introduction to D-modules Ginzburg, Victor Introduction to the theory of algebraic D-modules after Kashiwara-Beilinson-Bernstein (more accessible than Borel's book on D-modules). Prereq: Basic algebraic and differential geometry (rather little) Math 36000, Topology Proseminar May, J. Peter Math 37002, Boundary Value Problems for Elliptic Equations Nadirashvili, Nikolai We will consider boundary value problems for general linear elliptic second order equations and for some types of nonlinear equations, including the minimal surface equation, Monge-Ampere equation. Math 38500, Applied Mathematics Literacy Scott, Ridgway Guest lectures by experts on particular subjects will be featured.
UC Math Calendar by vladimir drinfeld in E 206 430 pm Monday, April 19, 2004 Geometric LanglandsIntroduction to DG categories. by vladimir drinfeld (E 206) http://www.math.uchicago.edu/~kevin/seminar/calendar.cgi?year=2004&month=04&day=
MathNet-Fields Medals vladimir Gershonovich drinfeld? . , 36. , 1954., 3.TI Manin, On the mathematical work of vladimir drinfeld. http://www.mathnet.or.kr/API/?MIval=people_fields_detail&ln=Vladimir Gershonovic
Erfolge Ehemaliger IMO-Teilnehmer Translate this page Borcherds, Richard E. Großbritannien, 77S, 78G, 1998. drinfeld, vladimir,UdSSR, 69G, 1990. Gowers, W. Timothy, Großbritannien, 81G, 1998. http://www.mathematik-olympiaden.de/IMOs/fields.htm
SciMath FAQ U UK 1986 Faltings, Gerd 1954 Germany 32 Princeton U USA 1986 Freedman, Michael LosAngeles CA USA 35 UC San Diego USA 1990 drinfeld, vladimir Kharkov USSR 36 http://www.whisqu.se/per/docs/math36.htm
Medallas Fields 2002 Translate this page Michael Freedman, 35 AÑOS, Estados Unidos. AÑO 1990 vladimir drinfeld,36 AÑOS, Unión Soviética. Vaughan Jones, 38 AÑOS, Nueva Zelanda. http://personales.ya.com/casanchi/ref/fields2002.htm
Extractions: Fields Procede el nombre de John Charles Fields (1863-1932), que en 1924 Presidió el Congreso Internacional de Matemáticas, en el cual se hizo la propuesta de concesión a los descubrimientos matemáticos más destacados. Se otorga el premio cada 4 años, y en total pueden recibir la medalla Fields hasta seis matemáticos en cada edición del mismo. Los galardonados han de ser menores de 40 años de edad. Aunque en algunas ocasiones se han concedido hasta un total de cuatro medallas Fields, en la última ocasión, agosto de 2002, solo han sido premiados dos de los posibles candidatos de todo el mundo. Han sido el ruso Vladimir Voevodsky y el francés Laurent Lafforgue. En lo que respecta a la cuantía económica, digamos que es irrisoria comparada con la de los Premios Nobel.
Matemáticos De Nuestro Tiempo (4) Translate this page -oo0oo-. vladimir Gershonovich drinfeld Geometría Algebráica,Teoría de Números, Teoría de grupos cuánticos. De Kharkov, Ucrania. http://personales.ya.com/casanchi/ref/matematicosy04.htm
Extractions: (y 4) La matemática actual tiene abiertos fecundos campos de un gran interés. Los grandes matemáticos de la segunda mitad del siglo XX y hasta nuestros días intentan el desarrollo de una matemática acorde con el tiempo en que vivimos, capaz de afrontar el reto que representa la tendencia social tanto como el progreso de las necesidades computacionales de las nuevas ingenierías o el avance vertiginoso de algunas disciplinas como la Astrofísica y la Computación Teórica. Mostramos aqui algunas referencias a su trabajo, utilizando diversas fuentes de datos, entre las que podemos destacar, por su excelente documentación, la base de datos de la Universidad de St. Andrews, Escocia. Es una somera indicación del quehacer en la disciplina de matemáticos de extraordinaria calidad, que nacieron en los últimos años de la década de los 50, ya durante la fase álgida de la Guerra Fría. Damos por terminada aquí, con esto cinco nombres punteros en la matemática actual, a esta pequeña serie de cuatro capítulos, reconociendo sin embargo que aunque son grandes matemáticos todos los que en ella están, no están todos los que son actualmente la élite del quehacer en la disciplina. Esperamos poder ofrecer, en la siguiente actualización de la Web, un nuevo artículo sobre la Medalla Fields del año pasado, 2002, y los dos nuevos grandes matematicos que la consiguieron.
Laurent Lafforgue, Dosier De Presse Medaille Fields 2002 Translate this page correspondance hypothétique est le cas n =2 qui a été résolu dans les années1970 par le mathématicien ukrainien vladimir drinfeld (médaille Fields 1990 http://www.ihes.fr/EVENEMENT/lafforgue/fields.html
Extractions: Laurent LAFFORGUE est né le 6 novembre 1966 à Antony dans les Hauts-de-Seine. Ancien élève de l'École Normale Supérieure de la rue d'Ulm (promotion 1986), il entre au CNRS comme chargé de recherche en 1990 au Laboratoire de mathématiques d'Orsay (unité mixte de recherche du CNRS et de l'université Paris-sud), dans l'équipe " Arithmétique et Géométrie Algébrique ". C'est en 1994 qu'il soutient sa thèse sous la direction de Gérard LAUMON et intitulée " D-Chtoucas de Drinfeld ". En 2000, il est promu directeur de recherche au CNRS et, en novembre de la même année, Laurent LAFFORGUE, en disponibilité de ce poste, rejoint l'IHÉS où il devient professeur permanent. Distinctions
Laurent Lafforgue, Fields Medal 2002 At the beginning of the seventies, vladimir drinfeld attacked the conjecturesin a more general algebraic context. For that purpose http://www.ihes.fr/EVENTS/lafforgue/aboutLaf.html
Extractions: He entered the CNRS as a research fellow in 1990, joining the research team of Arithmétique et Géométrie Algébrique in the Mathematics Department of the University Paris-Sud, Orsay. In 1994 he presented his thesis "D-Chtoukas de Drinfeld", under the guidance of Gérard Laumon, also from the CNRS. His thesis received recognition with the 1996 Cours Peccot and the Prize Peccot awards, awarded by the Collège of France. In 1998 he was invited speaker at the International Congress ofMathematicians in Berlin. Laurent Lafforgue established the Langlands Correspondences for a much wider class of cases than previously known. These correspondences connect arithmetic properties to analytic properties of some special group representations called automorphic representations. It was formulated by Robert Langlands at the end of the 1960's. In rank 1, this conjecture is nothing other than the now traditional "class field theory" of Emil Artin. In rank 2 and for number fields, the first great confirmations of this conjecture were the proof of the conjecture of Ramanujan per Pierre Deligne and the proof by Langlands itself of the conjecture of Artin except for a case. At the beginning of the seventies, Vladimir Drinfeld attacked the conjectures in a more general algebraic context. For that purpose, he built varieties similar to modular curves and showed certain cases of the conjecture of Langlands in rank 2. Then, as these varieties did not make it possible to reach all desired representations, Drinfeld introduced the "chtoucas", a step which enabled him to prove the conjecture of Langlands in rank 2. This turned out to make the general case accessible, after formidable technical difficulties were surmounted.
List Of Mathematical Topics (D-F) - Information Dotdecimal notation Douady, Adrien Double counting Double integral Douglas, Jesse Dragon curve drinfeld, vladimir Dual (category theory http://www.book-spot.co.uk/index.php/List_of_mathematical_topics_(D-F)
Extractions: A-C D-F G-I J-L M-O P-R ... Mathematicians D-branes d'Aguillon, Francois d'Alembert, Jean le Rond D'Alembert's principle ... Dyson, Freeman E6 (mathematics) e (mathematical constant) Earnshaw theorem Eccentricity ... Extreme value theory F-sigma set F4 (mathematics) F4 polytope Face (mathematics) ... Fuzzy logic All text is available under the terms of the GNU Free Documentation License (see for details). . Wikipedia is powered by MediaWiki , an open source wiki engine.
D Index Translate this page Simon (678*) Doob, Joseph (136*) Doppelmayr, Johann (181) Doppler, Johann (2467*)Douglas, Jesse (206*) Drach, Jules (143) drinfeld, vladimir (401*) du Bois http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/D.htm
The Mathematics Genealogy Project - Index Of DR Drinen, Michael, University of Washington, 1999. Drinen, Douglas, Arizona StateUniversity, 1999. drinfeld, vladimir, 1978. Driscoll, Mark, Washington University,1975. http://genealogy.impa.br/html/letter.phtml?letter=DR
Members Of The School Of Mathematics DRESS, Andreas, 196769, 1974-75. DRIBIN, Daniel M. 1936-37. drinfeld, vladimir,1989-90, 1996-98. DRIVER, Bruce, 1986-87. DUBINS, Lester E. 1957-59. http://www.math.ias.edu/dnames.html
Extractions: DAFNI, Galia DAI, Xianzhe DALLA VOLTA, Vittorio DANCHIN, Raphaël D'ANGELO, John P. DANI, Shrikrishna G. DANKNER, Alan DANSKIN, John M., Jr. DAR, Aparna DASKALOPOULOS, Georgios DASKALOPOULOS, Panagiota D'ATRI, Joseph E. DAUBECHIES, Ingrid DAVIDS, Norman DAVIDSON, Morley DAVIES, Edward B. DAVIS, Donald M. DAVIS, Horace C. DAVIS, Martin D. DAVIS, Michael DAWSON, John W., Jr. DAY, Jane DAY, Mahlon M. De SAPIO, Rodolfo V. de BARTOLOMEIS, Paolo de BRANGES, Louis de CATALDO, Mark de FARIA, Edson de la LLAVE, Rafael de la TORRE, Pilar de LEEUW, Karel de LYRA, Carlos B. de RHAM, Georges de WET, Jacobus S. DEBEVER, Robert DEDECKER, Paul DEGOND, Pierre DEHEUVELS, René DEIFT, Percy A. DEKKER, Jacob C.E. del PINO, Manuel DELANGE, Hubert DELIGNE, Pierre DELLACHERIE, Claude DELLAPIETRA, Stephen A. DELLAPIETRA, Vincent DELSARTE, Jean DENEF, Jan J. DENNIS, R. Keith DENY, Jacques DEODHAR, Vinay Vithal DESER, Stanley DESHOUILLERS, Jean-Marc DE TURCK, Dennis DEURING, Max DEVINATZ, Allen deWITT, B.S. DI PERNA, Ronald J. DIACONU, Calin DIAMOND, Fred DIAMOND, Harold G. DIAS, Candido
Agenda Organizers vladimir drinfeld University Chicago. Robert Langlands -Institute for Advanced Study. Peter Sarnak - IAS/Princeton University. http://www.math.ias.edu/automorph01agenda.html
Extractions: Institute for Advanced Study School of Mathematics Princeton, New Jersey AGENDA Audio, Video and Slides from the Conference Conference on Automorphic Forms: Concepts, Techniques, Applications and Influence April 4, 2001 - April 7, 2001 Organizers: Vladimir Drinfeld - University Chicago Robert Langlands - Institute for Advanced Study Peter Sarnak - IAS/Princeton University Andrew Wiles - IAS/Princeton University Support for this conference has been provided by the National Science Foundation. The Conference will be held in Wolfensohn Hall. Messages for conference guests may be left by calling (609) 734-8100 and will be placed on the bulletin board in the lobby of Simonyi Hall. WEDNESDAY, APRIL 4 Robert Langlands (IAS) Introductory Remarks Freydoon Shahidi (Purdue Univ), L-functions, Converse Theorems, and Functoriality Refreshment Break (IAS Dining Hall) Henryk Iwaniec (Rutgers Univ) Spectral Theory of Automorphic Forms and Analytic Number Theory Lunch (IAS Dining Hall) Laurent Lafforgue (IHES), Drinfeld's shtukas and Langlands' correspondence Refreshment Break (Fuld Hall Common Room) Christopher Skinner (Univ Michigan)
Laurent Lafforgue - Les Membres De L'Académie Des Sciences Translate this page Sur les corps de fonctions, vladimir drinfeld avait démontré dès les années1970 le cas du rang r égal à 2. Cette démonstration avait été rendue http://www.academie-sciences.fr/membres/L/Lafforgue_Laurent.htm
Extractions: Laurent Lafforgue, né le 6 novembre 1966, ancien élève de l'École normale supérieure (1986), docteur ès sciences (1993), a d'abord été chercheur au CNRS dans l'équipe "Arithmétique et Géométrie Algébrique" de l'université Paris 11 à Orsay (1990-2000). Depuis 2000, il est professeur permanent à l'Institut des hautes études scientifiques (IHES). Laurent Lafforgue a généralisé en tous rangs l'étude géométrique des "chtoucas" pour démontrer la correspondance. La preuve comprend aussi bien des parties d'analyse, en particulier l'usage de la formule des traces d'Arthur-Selberg et de techniques de fonctions L, que des parties géométriques, la troncature puis la compactification des espaces de "chtoucas". Mises ensemble, elles permettent un calcul partiel de la cohomologie de ces espaces qui suffit pour réaliser géométriquement la correspondance.