Extractions: Dictionaries: General Computing Medical Legal Encyclopedia Word: Word Starts with Ends with Definition The Absolute Infinite is Georg Cantor Georg Ferdinand Ludwig Philipp Cantor (March 3, 1845 - January 6, 1918) was a German mathematician who is best known as the creator of modern set theory. He is recognized by mathematicians for having extended set theory to the concept of transfinite numbers, including the cardinal and ordinal number classes. He was born in Saint Petersburg Russia, the son of a Danish merchant, George Waldemar Cantor, and a Russian musician, Maria Anna Böhm. In 1856 the family moved to Germany and he continued his education in German schools, earning his doctorate from the University of Berlin in 1867. Click the link for more information. 's concept of an " infinity Infinity (from the Latin "infinitus", meaning unlimited The infinite is usually defined as that which has no bounds in space or time. The traditional view derives from Aristotle: "... it is always possible to think of a larger number: for the number of times a magnitude can be bisected is infinite. Hence the infinite is potential, never actual; the number of parts that can be taken always surpasses any assigned number." [Physics 207b8]
Quaternion References buraliforti, cesare Introduction là Géométrie differentielle, suivant laméthode de H. Grassmann, Paris GauthierVillars, 11 + 165, 8°, 1897. http://home.att.net/~t.a.ell/QuatRef.htm
Extractions: Home Resume Research Travel [ Bibliography ] Photo Archive T his page contains a bibliography of quaternions and their applications. It is in alphabetical order by the first author's last name. If you have written or are aware of material written on quaternions and their application that is not contained within this list, please contact me via email with the reference or try my Mail Form . I will be glad to include it the next time I update this list. T. A. Ell A Abbott, Edwin A.: FLATLAND: A Romance of Many Dimensions . Basil Blackwell-Oxford, 1962. Abdel-khalek, Khaled: Quaternion Analysis , Dipartimento di Fisica-Universita di Lecce-Lecce, 73100, Italy, 1996. Abonyi, I.: Quaternion Representation of Lorentz Group for Classical Physics Abraham, Max: Ueber einige bei Schwingungsproblemen auftretende Differentialgleichungen. Math. Ann. 52, p. 81112, 1899. Abraham, Max: Geometrisehe Grundbegriffe. Encykl. d. math, Wiss., 4, p. 347, 1901 Acheson, Paulette Bootz: Multimedia Application Of Quaternions (Object Rotation) , M.Sc. dissertation, University Of Southern California 1997.
Burali-Forti Paradox The buraliforti paradox is named after cesare burali-forti, who discoveredit in 1897. burali-forti was an assistent of Giuseppe http://www.worldhistory.com/wiki/B/Burali-Forti-paradox.htm
Extractions: World History (home) Encyclopedia Index Localities Companies Surnames ... This Week in History The Burali-Forti paradox demonstrates that naïvely constructing "the set of all ordinal number s" leads to a contradiction and therefore shows an antinomy in a system that allows its construction. The reason is that the set of all ordinal numbers carries all properties of an ordinal number and would have to be considered an ordinal number itself. Then, we can construct its successor , which is strictly greater than . However, this ordinal number must be element of since contains all ordinal numbers, and we arrive at Modern axiomatic set theory circumvents this antinomy by simply not allowing construction of sets with unrestricted comprehension terms like "all sets which have property P ", as it was for example possible in Gottlob Frege's axiom system. The Burali-Forti paradox is named after Cesare Burali-Forti, who discovered it in . Burali-Forti was an assistent of Giuseppe Peano in Turin from to
The Paradoxes Of Set Theory The first of the modern paradoxes was published by the Italian mathematiciancesare buraliforti (burali-forti, 1897, pp. burali-forti, cesare (1897). http://www.aug.edu/dvskel/Johnson1998.htm
Extractions: Georg Cantor created and largely developed set theory in approximately the latter quarter of the nineteenth century. Hardly had his work been completed before paradoxes began to appear. The first of the modern paradoxes was published by the Italian mathematician Cesare Burali-Forti (Burali-Forti, 1897, pp. 157-164) in the same year in which Cantor's last set-theoretical paper was published, 1897. The Burali-Forti paradox was apparently discovered earlier by Cantor himself (Fraenkel, 1930, p. 261). A paradox markedly similar to the Burali-Forti paradox is the Cantor paradox of 1899 (published posthumously in 1932) concerned with cardinal numbers (Fraenkel, 1930, p. 261). The Burali-Forti paradox was concerned with ordinal numbers. Since more readers are familiar with cardinal numbers than with ordinal numbers, the Cantor paradox will be stated. Consider the cardinal number of the set of all sets. Clearly this is the greatest possible cardinal number. But by a standard theorem of intuitive set theory, the set of all subsets of a set has a greater cardinal number then the set itself. Therefore, the cardinal number of the set of all subsets of the set of all sets is greater than the greatest possible cardinal number, an obvious contradiction. Whereas the Burali-Forti and Cantor paradoxes involve results of set theory, Bertrand Russell discovered in 1902 a paradox based on just the concept of set itself. The result was also discovered independently by Ernst Zermelo (Fraenkel and Bar-Hillel, 1958, p. 6). The paradox comes about by considering the set of all sets which have the property of not being members of themselves. For example, the set of all men is not a man, whereas the set of all sets is a set.
La Matematica Italiana 1800-1950 Translate this page cesare burali-forti. (1861-1931). Nacque ad Arezzo il 13 - 8 - 1861e morì a Torino il 21 - 1 - 1931. Laureato a Pisa nel 1884, poco http://www.dm.unito.it/sism/m_italiani/biografie/tricomi/buraliforti.html
Biografisk Register Translate this page Henry (1561-1630) Brouwer, Luitzen EJ (1881-1966) Brun, Viggo (1885-1978) Buffon,Georges Comte de (1707-88) burali-forti, cesare (1861-1931) Buridan, Jean (ca http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm
Neue Seite 1 Translate this page burali-forti, cesare (1861 - 1931). Burchnall, Joseph (1892 - 1975). burali-forti,cesare (1861 - 1931). Fourier, Jean Baptiste Joseph de (21.3.1768 - 16.5.1830). http://www.mathe-ecke.de/mathematiker.htm
Extractions: Abbe, Ernst (1840 - 1909) Abel, Niels Henrik (5.8.1802 - 6.4.1829) Abraham bar Hiyya (1070 - 1130) Abraham, Max (1875 - 1922) Abu Kamil, Shuja (um 850 - um 930) Abu'l-Wafa al'Buzjani (940 - 998) Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843) Aepinus, Franz Ulrich Theodosius (13.12.1724 - 10.8.1802) Agnesi, Maria (1718 - 1799) Ahlfors, Lars (1907 - 1996) Ahmed ibn Yusuf (835 - 912) Ahmes (um 1680 - um 1620 v. Chr.) Aida Yasuaki (1747 - 1817) Aiken, Howard Hathaway (1900 - 1973) Airy, George Biddell (27.7.1801 - 2.1.1892) Aithoff, David (1854 - 1934) Aitken, Alexander (1895 - 1967) Ajima, Chokuyen (1732 - 1798) Akhiezer, Naum Il'ich (1901 - 1980) al'Battani, Abu Allah (um 850 - 929) al'Biruni, Abu Arrayhan (973 - 1048) al'Chaijami (? - 1123) al'Haitam, Abu Ali (965 - 1039) al'Kashi, Ghiyath (1390 - 1450) al'Khwarizmi, Abu Abd-Allah ibn Musa (um 790 - um 850) Albanese, Giacomo (1890 - 1948) Albert von Sachsen (1316 - 8.7.1390)
Extractions: Liste chronologique avec dates Liste alphabétique avec dates A B C D ... Z A Abel, Niels-Henrik Alembert (d'), Jean Le Rond Al-Khwarizmi (vers 780-vers 850) Ampère , André Apollonius de Perge (vers 260-vers 180 avant J.-C.) Archimède (287-212 avant J.-C.) Aristarque de Samos (vers 310- 250 avant J.-C.) Aristote (384-322 avant J.-C.) Averroès (Ibn Rushd) Avicenne (Ibn Sina) B Banach, Stefan Beltrami, Eugène Bernoulli, Ja cques Bertrand, Joseph Bézout, Etienne Bohr , Niels Boltzmann, Ludwig Bolyaï, Jean Bolzano, Bernard Bombelli, Nicolas Boole, George Borel, Emile Bourbaki , Nicolas Brahé , Tycho Broglie (de), Louis Brouwer, Luitzen Bruno, Giordano Burali-Forti , Cesare C Cantor , Georg Cardan, Jérôme Carnot , Lazare Cartan, Elie Cauchy , Augustin Cavaliéri, Bonaventure Chasles , Michel Cholesky, André Louis Chuquet, Nicolas Clairaut
DML: Digital Mathematics Library: Retrodigitized Mathematics Journals 203, Cornell, buraliforti, cesare Applications à la mécanique et à la physique,1913, book. 205, Michigan, burali-forti, cesare Geometria descrittiva. http://www.mathematik.uni-bielefeld.de/~rehmann/DML/dml_links_author_B.html
Extractions: If you want items to be added here, please send me the necessary data. Lists ordered by "Author name", "Title", or "Repository" are provided: (ordering by "Repository" gives a list of journals only. Sorting by "Author" gives lists only with those items - such as books - with an author entry.) Author: A B C D ... Z Title: A B C D ... Z Nr. Repository: Author, Title (Books only): Pages: Year(s): Type: Cornell Bachelier, Louis Jean Baptist
DML: Digital Mathematics Library: Retrodigitized Mathematics Journals 224, Cornell, buraliforti, cesare Applications à la mécanique et à la physique,1913, book. 226, Michigan, burali-forti, cesare Geometria descrittiva. http://www.mathematik.uni-bielefeld.de/~rehmann/DML/dml_links_author.html
Extractions: If you want items to be added here, please send me the necessary data. If you click on "Title" below, you get a list ordered by title, similarly with "Author", "Repository" (sorting by its full name), and "Type". (Sorting by "Author" gives a list only with those items - like books - having an author entry.) Nr. Repository: Title: Author: Year(s): Type: Michigan Abbott, Edwin Abbott: Flatland; a romance of many dimensions, by a square, with illustration by the book Michigan Abel, Niels Henrik: Abhandlung über eine besondere Klasse algebraisch auflösbarer Gleichungen. Von N. H. Abel (1829). Hrsg. von Alfred Loewy. book Michigan Abel, Niels Henrik: Untersuchungen über die Reihe:
Lebensdaten Von Mathematikern Translate this page Buffon, Georges Comte de (1707 - 1788) Bugaev, Nicolay (1837 - 1903) Bunyakovsky,Viktor (1804 - 1889) burali-forti, cesare (1861 - 1931) Burchnall, Joseph http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
Extractions: Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
B Index de Boislaurent (171) Buffon, Georges Comte de (157*) Bugaev, Nicolay (87) Bukreev,Boris (165*) Bunyakovsky, Viktor (172*) buraliforti, cesare (530) Burchnall http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/B.htm
Extractions: Cellule MathDoc Bibliothèque nationale de France - Collection Gallica Cornell University Library Digital Math Books Collection Michigan University Library Making of America and Historical Math Collection Göttinger Digitalisierungszentrum Mathematica Abat, Bonaventure Allman, George Johnston ... von Lilienthal, Reinhold
Foundations Of Mathematics buraliforti, cesare. A Question on Transfinite Numbers. In From Frege to GödelA Sourcebook in Mathematical Logic, 1897-1931, edited by J. Heijenoort. http://www.canyoninstitute.org/resources/URBibliography/061_foundations_math_a.h
Extractions: Bernhart, Frank. "Are Mathematical Objects Ontologically Real?: Ideas and Suggestions." In A Second Conference on the Foundations of Mathematics , edited by Brabenec, Robert L. Wheaton, IL: Wheaton College (1979) 80-88. Brouwer, Luitzen Egbertus Jan. "Intuitionistic Reflections on Formalism." In From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 490-492. Brouwer, Luitzen Egbertus Jan. "On the Significance of the Principle of Excluded Middle in Mahtematics, Especially in Function Theory." In From Frege to Gödel: A Sourcebook in Mathematical Logic 1879-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 334-345. Burali-Forti, Cesare. "A Question on Transfinite Numbers." In From Frege to Gödel: A Sourcebook in Mathematical Logic, 1897-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 104-112. De Koning, Jan. "Can Mathematical Methods Yield Theological Truth?" In An Eighth Conference on Mathematics from a Christian Perspective , edited by Robert L. Brabenec. Wheaton, IL: Wheaton College (1991) 176-190.
AIP Niels Bohr Library Holdings. More by this author. buraliforti, cesare, 1861-. Subjects. Vector analysis. byauthor burali-forti, cesare, 1861-. by title Éléments de calcul v http://libserv.aip.org:81/ipac20/ipac.jsp?uri=full=3100001~!17621~!0&profile=aip
From Frege To Goedel und Universitätsbibliothek, Göttingen.) burali-forti, cesare, A question http://www.fuchu.or.jp/~d-logic/en/books/ftog.html
Livros Novos Translate this page (Subcommittee for the Netherlands of the International Commission on MathematicalInstruction, 4) BBC QA501 burali-forti, cesare B945g Geometria descritiva. http://www.ime.usp.br/bib/castrucci.html
Extractions: Sala "Benedito Castrucci" Livros BBC TA175 ABBOTT, W. A134iP Fundamentos do desenho técnico. Rio de Janeiro, Tecnoprint, s.d. pt. A biblioteca possui: pt.1. Conteúdo: pt.1 Desenho geométrico. BBC QA583 ACCIOLY, Pompeu B. A171e Equações vectoriais como fundamento geométrico-algoritmico da mecânica. Rio de Janeiro, Imprensa Nacional, 1947. 229p. BBC QA453 ADAM, P. Puig A195c Curso de geometria métrica.