Geometry.Net - the online learning center
Home  - Theorems_And_Conjectures - Trisection Of An Angle
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20

         Trisection Of An Angle:     more books (29)
  1. Famous problems of elementary geometry : the duplication of the cube, the trisection of an angle, the quadrature of the circle, : an authorized translation of F. Klein's Vorträge by Felix Klein, 2007-11-26
  2. The mathematical atom: Its involution and evolution exemplified in the trisection of the angle : a problem in plane geometry by Julius Joseph Gliebe, 1933
  3. Famous problems of elementary geometry: the duplication of the cube; the trisection of an angle; the quadrature of the circle; an authorized translation ... ausgearbeitet von F. TSgert, b by Michigan Historical Reprint Series, 2005-12-20
  4. Famous problems of elementary geometry;: The duplication of the cube, the trisection of an angle, the quadrature of the circle; an authorzed translation ... fragen der elementargeometrie, ausgearbeitet by Felix Klein, 1930
  5. Famous problems of elementary geometry: The duplication of the cube; the trisection of an angle; the quadrature of the circle; an authorized translation ... ausgearbeitet von F. Tagert, by Felix Klein, 1897
  6. Famous Problems of Elementary Geometry, the Duplication of the Cube, the Trisection of an Angle, The Quadrature of the Circle by Wooster Woodruff and Smith, David Eugene Beman, 1956
  7. The trisection of angles by Anthony G Rubino, 1990
  8. Gibson's Theorem: Functions of fractional components of an angle, including the angle trisection by Thomas H Gibson, 1978
  9. Famous problems of elementary geometry: the duplication of a cube, the trisection of an angle, the quadrature of the circle;: An authorized translation ... ausgewählte fragen der elementargeometrie, by Felix Klein, 1950
  10. Regular Polygons: Applied New Theory of Trisection to Construct a Regular Heptagon for Centuries in the History of Mathematics by Fen Chen, 2001-09
  11. A Budget of Trisections by Underwood Dudley, 1987-11
  12. The trisection of any rectilineal angle: A geometrical problem by Geo Goodwin, 1910
  13. Trisection of any rectilineal angle by elementary geometry and solutions of other problems considered impossible except by aid of the higher geometry by Andrew Doyle, 1881
  14. Trisection of an angle by W. B Stevens, 1926

61. Trisection De L'Angle Avec Cabri
angle avec Cabri (Méthode de Pappus). La démonstrationde ce qui est observé à l’issue de la construction
http://www2.ac-lille.fr/math/trisection_de_l'angle_avec_cabri.htm
La Trisection de l'Angle avec Cabri (Méthode de Pappus) La démonstration de ce qui est observé à l’issue de la construction est accessible en collège dès la classe de 4 ème , et peut constituer un réinvestissement de géométrie en classe de 2 nde Télécharger l'activité au format word (25 ko) Télécharger l'activité au format word zippé (5 ko) Contexte historique : Ce problème tint longtemps en haleine les géomètres grecs et leurs successeurs, qui cherchèrent à construire à la règle non graduée et au compas le tiers d’un angle donné quelconque.
La réponse arriva seulement au 19 ème siècle : une telle construction fut alors définitivement prouvée impossible, tout comme celles de la Quadrature du Cercle et de la Duplication du Cube.
Cependant Pappus d’Alexandrie y est arrivé par une autre méthode, qui utilise la règle graduée pour reporter une longueur imposée. Construction :
  • Créer les trois points O, A, B définissant l’angle en A à trisecter Créer les droites (OA), (AB)
  • 62. Dict Trisection D'un Angle
    angle – Problème ancien insoluble à l aide de la règle et ducompas conformément aux constructions permises en géométrie euclidienne.
    http://www.recreomath.qc.ca/dict_angle_trisection.htm

    Page d'accueil
    Banque de problèmes récréatifs Défis
    Détente
    ... Contactez-nous
    Dictionnaire de mathématiques récréatives Angle Trisection d'un angle – Problème ancien insoluble à l'aide de la règle et du compas conformément aux constructions permises en géométrie euclidienne. Le problème consiste à diviser un angle en trois parties congruentes. Nicomède ( II e siècle av. J.-C.) inventa la courbe appelée conchoïde pour résoudre le problème. Ce n'est qu'en 1837 que l'impossibilité de ce problème a été démontrée. Ce problème appartient à la classe des récréations de construction © Charles-É. Jean, 1996-2001. Tous droits réservés. Index : A

    63. Demonstration Of The Archimedes' Solution To The Trisection Problem
    angle trisection by Archimedes of Syracuse (circa 287 212 BC). Hi Alex. The solutionfor the angle trisection can be presented in a more straightforward way.
    http://www.cut-the-knot.org/pythagoras/archi.shtml
    CTK Exchange Front Page
    Movie shortcuts

    Personal info
    ...
    Recommend this site

    Angle Trisection
    by Archimedes of Syracuse
    (circa 287 - 212 B.C.) Archimedes of Syracuse is popularily known for the law he discovered on occasion of taking his bath . "Eurika" he exclaimed and made it into the history. (Along with Newton and Gauss he is counted among the greatest mathematicians of all times. As an engineer he frustrated numerous attempts by the Romans to capture the city of Syracuse.) The problem of constructing an angle equal to the one third of the given one has been pondered since the times of antiquity. Probably to make the notion of 'geometric construction' more exciting the Ancient Greeks have restricted the allowed operations to using a straightedge and a compass. It's thus specifically forbidden to use a ruler for the sake of measurement. Three famous construction problems lingered until early 19th century when it was shown that it's impossible to solve them with the help of only a straightedge and a compass. The three problems are: to trisect a given angle, to double a cube, and to square a circle . However, one illicit solution that has been found in the works of Archimedes is demonstrated below.

    64. Trisecting The Angle
    Why Trisecting the angle is Impossible. One of the major problems people have withangle trisection is the very idea that something can be proven impossible.
    http://www.uwgb.edu/dutchs/PSEUDOSC/trisect.HTM
    Why Trisecting the Angle is Impossible
    Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay
    First-time Visitors: Please visit . Use "Back" to return here.
    A Note to Visitors
    I will respond to questions and comments as time permits, but if you want to take issue with any position expressed here, you first have to answer this question: What evidence would it take to prove your beliefs wrong? I simply will not reply to challenges that do not address this question. Refutability is one of the classic determinants of whether a theory can be called scientific. Moreover, I have found it to be a great general-purpose cut-through-the-crap question to determine whether somebody is interested in serious intellectual inquiry or just playing mind games. It's easy to criticize science for being "closed-minded". Are you open-minded enough to consider whether your ideas might be wrong? The ancient Greeks founded Western mathematics, but as ingenious as they were, they could not solve three problems: It was not until the 19th century that mathematicians showed that these problems could not be solved using the methods specified by the Greeks . Any good draftsman can do all these constructions accurate to any desired limits of accuracy - but not to absolute accuracy. The Greeks themselves invented ways to solve the first two exactly, using tools other than a straightedge and compass. But under the conditions the Greeks specified, the problems are impossible.

    65. Trisecting The Angle
    This is perhaps the simplest trisection using a marked straightedge. It was discoveredby Archimedes. Given the angle AOX, draw a circle of arbitrary radius
    http://www.uwgb.edu/dutchs/PSEUDOSC/Trisect0.HTM
    Trisecting the Angle
    Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay
    First-time Visitors: Please visit . Use "Back" to return here.
    A Note to Visitors
    I will respond to questions and comments as time permits, but if you want to take issue with any position expressed here, you first have to answer this question: What evidence would it take to prove your beliefs wrong? I simply will not reply to challenges that do not address this question. Refutability is one of the classic determinants of whether a theory can be called scientific. Moreover, I have found it to be a great general-purpose cut-through-the-crap question to determine whether somebody is interested in serious intellectual inquiry or just playing mind games. It's easy to criticize science for being "closed-minded". Are you open-minded enough to consider whether your ideas might be wrong? Trisecting the angle is one of the three classic unsolved problems of antiquity. They are all known to be unsolvable under the rules used by the Greeks.

    66. Recherche : Trisection%20d'un%20angle
    trisection d un angle , CertificationIDDN. Dans les fiches.
    http://publimath.irem.univ-mrs.fr/cgi-bin/publimath.pl?r=trisection d'un angle

    67. Archimedes And Latitude
    Math 150. Projects. Archimedes trisection of the angle. Dr. Wilson. This constructionis Archimedes trisection of the angle by compass and straightedge.
    http://www.sonoma.edu/users/w/wilsonst/Courses/Math_150/projects/trisection.html
    Math 150
    Projects
    Archimedes Trisection of the Angle
    Dr. Wilson
    The angle at A is one third of the central angle. This construction is Archimedes' trisection of the angle by compass and straightedge. One thing which makes this construction remarkable is that in 1832, the French mathematician Evariste Galois proved that it was impossible to trisect an angle with a compass and straightedge. Every year, Mathematics Department chairs get trisections of the angle with compass and straightedge, and they throw them in the wastebasket because it is very well known that Galois proved that it can't be done. In fact, Galois' proof is more well known than Archimedes' construction. Whenever someone proves that something can't be done, one should examine the proof for unconscious, limiting assumptions. and this construction can be done using only a compass and a straightedge. I have found that it comes out about as accurately as any of my other compass and straightedge constructions. top
    Math 100

    Steve Wilson

    68. Mathematical Mysteries: Trisecting The Angle
    Mathematical Mysteries Trisecting the angle. Bisecting a given angle usingonly a pair of compasses and a straight edge is easy. Trisecting an angle.
    http://plus.maths.org/issue7/xfile/
    @import url(../../newinclude/plus_copy.css); @import url(../../newinclude/print.css); @import url(../../newinclude/plus.css); search plus with google
    Permission is granted to print and copy this page on paper for non-commercial use. For other uses, including electronic redistribution, please contact us. Issue 7 January 1999 Contents Features Unspinning the boomerang Bang up a boomerang! Galloping gyroscopes Time and motion ... The origins of proof Career interview Career interview: Games developer Regulars Plus puzzle Pluschat Mystery mix Letters Staffroom Introducing the MMP Geometer's corner International Mathematics Enrichment Conference News from January 1999 ...
    poster! January 1999 Regulars
    Mathematical Mysteries: Trisecting the Angle
    Bisecting a given angle using only a pair of compasses and a straight edge is easy. But trisecting it - dividing it into three equal angles - is in most cases impossible. Why?
    Bisecting an angle
    If we have a pair of lines meeting at a point O, and we want to bisect the angle between them, here's how we do it.

    69. Mathtador
    2)trisection d un angle partager un angle en 3 parties égales 3)Quadrature
    http://pageperso.aol.fr/danthuylam/constructible.htm
    Accueil SERVICE Accueil Lire d'or Forum var nom = "fan2mobile"; var serveur = "aol.com"; var sujet= "mathtador"; document.write(''); document.write('Email' + ''); LIENS Mars-2004
    Introduction Commençons par définir ce que c'est un point constructible à partir de 2 points.
    1)intersection des droites
    2)intersection des droites et des cercles
    3)intersection des cercles
    droite (UV), cercle C(R,ST) U,V,R,S,T points déjà construits.
    Remarque: On démontre que tout ce qu'on peut construire avec la régle et le compas on peut construire avec le compas seul.
    Nombre constructible a ou a,b €K et on recommence avec les nombres obtenus. on note K c l'ensemble des nombres constructibles à partir de K, si µ=1 (K=Q) on dira constructible (tout court)
    exemple 3/7 + 5) est un nombre constructible (tout court) . Si on pose:
    K i i i u,v, µ i € K i
    K i+1 =K i i ) avec µ i €K i un nombre constructible est construit étape par étape, et il se trouve dans l'un des K i K->K ->K ->....K i Les Grecs envisagaient 3 problèmes de constructions. 1)Duplication d'un cube: construire un cube de volume le double d'un cube donné 2)Trisection d'un angle: partager un angle en 3 parties égales 3)Quadrature du cecle: construire un carré dont la surface est la même d'un cercle donné En plus de ça on voudrait savoir quels sont les polygones réguliers qu'on peut construire?

    70. HIPPIAS D'Elis
    Translate this page permettant aussi bien de solutionner ce problème que de résoudre celui de la« quadrature du cercle » et celui de la « trisection de l’angle ».
    http://coll-ferry-montlucon.pays-allier.com/hippias.htm
    HIPPIAS
    d’Elis
    Vers 460 – vers 400 av J.C
    Hippias était un politicien et un philosophe qui voyagea de ville en ville en monnayant ses « services ». Il s’intéressa à la poésie, à la Grammaire, à l’Histoire, à la Politique, à la Musique, à la Sculpture, à l’Architecture, aux Mathématiques et à l’Astronomie… ainsi que le faisait tout bon « penseur » à son époque. Platon qui apparemment ne l’appréciait pas, le décrit comme un personnage vaniteux, arrogant et vantard, n’ayant que des connaissances superficielles dans les nombreux domaines qu’il se flattait de connaître.
    Hippias se disait capable d’improviser un discours sur n’importe quel sujet. Il écrivit des poésies, des épopées, des tragédies et toutes sortes d’œuvres en prose. Il maîtrisait parfaitement toutes les techniques du calcul, connaissait la Géométrie, l’Astronomie, l’Harmonie musicale et la Rhétorique. Il possédait surtout une mémoire prodigieuse qu’il cultivait sans cesse. A la fin de sa vie, il était encore capable de réciter cinquante noms dans l’ordre où il les avait entendus une seule fois. Tout ce qu’il portait sur lui : vêtements, sandales, objets personnels, il l’avait fabriqué de ses propres mains.

    71. Trisecting An Angle Using A Tomahawk
    Trisecting an angle with a Tomahawk. Geometry students out! It is an oftenstated premise that it is impossible to trisect an angle. This
    http://www.articlesforeducators.com/math/000005.asp
    Trisecting an angle with a Tomahawk
    Geometry students can trisect angles with the proper tools. Instead of doing a construction involving a straight-edge and compass, build a tomahawk! I have used the following activity as a research assignment for individual geometry students. I suspect it could be used equally well as a classroom activity. If you try it, please let me know how it works out!
    It is an often stated premise that it is impossible to trisect an angle. This is a vague (and inaccurate) restatement of a mathematical truth. First, it should be noted that the key phrase "with a straight-edge and compass" is missing from the statement. Second, some angles (such as a ninety degree angle) can be trisected with a straight-edge and compass.
    Instead, we should say it is impossible to devise a construction method of trisecting any angle with a straight-edge and compass. This lesson helps prove the point by demonstrating that angles can be trisected using a unique tool called a 'tomahawk', that any student can build.
    The Tomahawk is actually going to be created on paper, and then cut out with scissors, so get ready to be 'crafty'. First, draw a straight line of arbitrary length (my line is about three inches long), and trisect it.

    72. Trisection Et Trigonométrie
    angle et trigonométrie. Partager un angle de mesureq en 3 parties égales revient, si on l inscrit dans un cercle
    http://www.district-parthenay.fr/parthenay/creparth/GUICHARDJp/inventeur/Trisect
    Partager un angle de mesure q z = 2 sin q et sin (q

    73. TRISECTING AN ANGLE
    They are just there to show the idea. Problem Find a general method for trisectionof any given angle using the classical tools. You start out with an angle
    http://www.physlib.com/trisecting_angle.html
    TRISECTING AN ANGLE
    NOTE: all images are schematic and don't represent real values. They are just there to show the idea.
    Problem: Find a general method for trisection of any given angle using the classical tools.
    You start out with an angle:
    Draw a circle with the angle in its centre and draw to radii's following the sides of the angle. You can give the radii of the circle any length you want; this is completely arbitrary. The radii of this circle we call 'r' and the circles diameter we call 'd':
    pic2) Our original angle in white. We drew a circle around it(red) and the circles radii's are the green lines going out and following the sides of the angle.
    You can then erase the circle and connect the tips of the radii lines:
    pic3) The green radii's are connected by the red line. Let's call this red line 'y'
    Then split 'y' in two parts by drawing two arbitrarily large circles that intersects each other. One whose centre is allocated on the tip of one of the green radii lines and another whose centre lies on the other green radii line. Draw a line that goes through the two points where the two new circles intersects and you've split 'y' in two:
    pic4) The blue circles are the ones that is used for splitting 'y', they have their centres at the tips of the radii lines, and the yellow line is the line that goes through the circle's intersection points and splits 'y.'

    74. 51M15: Geometric Constructions
    and other unique mathematical experiences; Trisecting an angle by motionsoff the plane. Apollonius method of trisecting an angle.
    http://www.math.niu.edu/~rusin/known-math/index/51M15.html
    Search Subject Index MathMap Tour ... Help! ABOUT: Introduction History Related areas Subfields
    POINTERS: Texts Software Web links Selected topics here
    51M15: Geometric constructions
    Introduction
    There is a theme in classical plane geometry in which one attempts to carry out various constructions using a ruler and compass. The simpler tasks are taught to us in primary and secondary school.
    History
    Applications and related fields
    More general information about polygons (and polyhedra) is available on another page, as are a number of papers concerning plane geometry
    Subfields
    Parent field: 51M - Real and Complex Geometry
    Textbooks, reference works, and tutorials
    Software and tables
    Other web sites with this focus
    Selected topics at this site

    75. Trisection Par Cercle Et Hyperbole
    angle par intersection cercle - hyperbole équilatère. Corpsde l article 2 - Application à la trisection d un angle. Le principe.
    http://www-cabri.imag.fr/abracadabri/Coniques/Panoplie/Trisect.html
    Panoplie du constructible 1.a Trissection de l'angle
    1.b
    Retour Conique Autre utilisation des coniques
    Hepta.ps
    (104 Ko) ou au format PDF Hepta.pdf (80 Ko) , ou au format TeX (en cours).
    Pour le .pdf
    Pour la construction de l'hyperbole ci-dessous, on peut utiliser la macro HypEq1.mac de la
    Construction :
    Trisect1.fig
    : on sait que, dans la version actuelle de Cabri (09/98) l'ordre des intersections avec les coniques ne sont pas stable par manipulation directe.
    Intersection de deux objets / intersection en manipulation directe
    Intersection de deux objets
    Intersection en manipulation directe
    cette page hyperbolique il faut cacher le cercle ce centre O, avant de prendre l'intersection avec le curseur en s'approchant du point voulu.
    Effet de bord
    pourquoi n'y reste-t-il pas ?
    Trissect.mac (objets initiaux O, I, M obtjet final le point A)
    Trisect2.fig
    haut
    Corps de l'article : 1 - Outils analytiques
    Autrement dit, en utilisant le produit scalaire :
    , soit encore :
    Sous cette forme il est clair que le point d'affixe
    (S)
    aussi. On voit donc que l'application involutive

    76. Geometric Cryptography: Identification By Angle Trisection
    Featured product. Recommended links. Geometric Cryptography Identification by AngleTrisection. Date Feb 26, 2000. Section Cryptography. Author Mike Burmester.
    http://www.secinf.net/cryptography/Geometric_Cryptography_Identification_by_Angl

    Anti Virus Section
    Authors Books Email Security Test ... Security Library Site Search
    Anti Virus Section By Authors By Topics Authors ... Windows Security Featured Product Recommended Sites
    Geometric Cryptography: Identification by Angle Trisection
    Date: Feb 26, 2000 Section: Cryptography Author: Mike Burmester Rating: 3/5 - 1 Votes We propose the field of "geometric cryptography", where messages and ciphertexts may be represented by geometric quantities such as angles or intervals, and where computation is performed by ruler and compass constructions. Click Here to download this white paper Rating: 3/5 - 1 Votes
    Featured Links*
    Join our mailing list!
    Enter your email below,
    then click the "join list" button
    Anti Virus Section
    Authors Books Email Security Test ... Product Submission Form WindowSecurity.com is in no way affiliated with Microsoft Corp. *Links are sponsored by advertisers.
    Internet Software Marketing Ltd.

    77. Geometry Problem Of The Week: June 2-6, 1997
    June 26, 1997 angle trisection with a Carpenter s Square. By Rick Peterson. Findpoint R bisecting PQ (so PR = w). Then rays BP and BR trisect angle ABC.
    http://members.aol.com/rmp605/Geometry/pow970602.html
    A solution to the
    Geometry Problem of the Week
    June 2-6, 1997: Angle Trisection with a Carpenter's Square
    By Rick Peterson (If you can read these words, you're only seeing a captured image, not the real java applet! You need a browser that deals with java to move the points.) If your Web browser supports Java applets, you can drag the red points to change the figure. Choose an angle by moving A, then slide point P until point Q is on AB, and angle ABC will be trisected. The construction works! Of course, an ancient Greek geometer would say, "You're cheating! You aren't using just a compass and straightedge!" But a carpenter, even an ancient Greek one, would surely say, "So what? It works!" Theorem: Given any angle ABC, it can be trisected using a carpenter's square (CS) as follows: Construct DE parallel to BC and distance w (the width of the arm of the CS) from it. Place the CS so that (1) the outer corner P is on DE, (2) B is on the inner edge of the CS, (3) the distance PQ is 2 w, where Q is the intersection of the other outer edge of the CS with AB. Find point R bisecting PQ (so PR = w). Then rays BP and BR trisect angle ABC.

    78. Euclid's Elements, Book I, Proposition 9
    On angle trisection. Much better would be to study Galois theory, the mathematicsthat proves the impossibility of angle trisection. Use of Proposition 9.
    http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI9.html

    Proposition 9
    To bisect a given rectilinear angle. Let the angle BAC be the given rectilinear angle. It is required to bisect it. Take an arbitrary point D on AB. Cut off AE from AC equal to AD, and join DE. Construct the equilateral triangle DEF on DE, and join AF. I.3
    Post.1

    I.1
    I say that the angle BAC is bisected by the straight line AF. Since AD equals AE, and AF is common, therefore the two sides AD and AF equal the two sides EA and AF respectively. And the base DF equals the base EF, therefore the angle DAF equals the angle EAF. I.Def.20
    I.8
    Therefore the given rectilinear angle BAC is bisected by the straight line AF. Q.E.F.
    Construction steps When using a compass and a straightedge to perform this construction, three circles and the final bisecting line need to be drawn. One circle with center A and radius AD is needed to determine the point E. The other two circles with centers at D and E and common radius DE intersect to give the point F. The sides of the equilateral triangle aren't needed for the construction. There is an alternate construction where the circles centered at D and E have a different radius, namely

    79. Euclid's Elements, Book I, Postulate 2
    Suppose the angle ABC is to be trisected. The ancient Greek geometers believed thatangle trisection required tools beyond those given in Euclid s postulates.
    http://aleph0.clarku.edu/~djoyce/java/elements/bookI/post2.html

    Postulate 2
    To produce a finite straight line continuously in a straight line.
    Here we have the second ability of a straightedge, namely, to extend a given line AB to CD. This postulate does not say how far a line can be extended. Sometimes it is used so that the extension equals some other line. Other times it is extended arbitrarily far. As with the first postulate, it is implicitly assumed in the books on plane geometry that when a line is extended, it remains in the plane of discussion. The first proposition on solid geometry, proposition XI.1 , claims that line can't be only partly in a plane. The central step in the proof of that proposition is to show that a line cannot be extended in two ways, that is, there is only one continuation of a line. The proof is hardly convincing. Rather, this postulate should include a clause to that effect.
    Neusis: fitting a line into a diagram
    Other uses of a straightedge can be imagined. For instance, it might be marked at two points on it, then fit into a diagram so that the two points fall on two lines, perhaps curved. This operation is an example of "neusis" or "verging" where lines are adjusted to fit the diagram. For instance, Archimedes, who lived in the century after Euclid, used neusis in several constructions in his work On Spirals.

    80. Folly
    13. This arc will intersect the arc which passes through the two corresponding pointsof trisection, at the point of trisection of the arc of the angle to be
    http://meltingpot.fortunecity.com/tenison/297/Folly.html
    web hosting domain names email addresses Early Folly
    The following letter was created and offered to various Universities to
    verify the accuracy of the supposition. It didn't take long to have it proven as inaccurate but I can't locate the proof correspondence
    and can't remember just who the professor was who shot holes in it.
    16 January 1951 TO WHOM IT MAY CONCERN:
    We the undersigned Rudell 0. BLANKENSHIP, Clarence A. SLOPER and Clifford L. GOODWIN this date 16 January 1951 have to our knowledge discovered the means of trisecting any angle with the use of a straight edge and compass only. The solution was arrived at in the following manner: 1. Bisect any angle with a line. 2. Construct a perpendicular to the bisecting line (intersecting both legs of the angle). 3. Construct a second perpendicular to the bisecting line further from
    the apex. 4. Construct on the second perpendicular, a trisected line which is also bisected by the bisecting line.

    Page 4     61-80 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter