Geometry.Net - the online learning center
Home  - Scientists - Zariski Oscar
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Zariski Oscar:     more books (64)
  1. Algebraic Surfaces (Classics in Mathematics) by Oscar Zariski, 1995-03
  2. An Introduction to the Theory of Algebraic Surfaces (Lecture Notes in Mathematics) by Oscar Zariski, 1969-01-01
  3. Oscar Zariski: Collected Papers Volume Ii: Holomorphic Functions and Linear Systems by Oscar Zariski, 1973
  4. Oscar Zariski: An entry from Gale's <i>Science and Its Times</i>
  5. Oscar Zariski: Collected Papers Volume 3: Topology of Curves and Surfaces, and Special Topics in the Theory of Algebraic Varieties by Oscar Zariski, 1978
  6. Commutative Algebra Volume 2 by Oscar Zariski, 1960-01-01
  7. Commutative Algebra, Volume I. by Oscar Zariski,
  8. Collected Papers, Volume IV: Equisingularity on Algebraic Varieties. Edited by J. Lipman and B. Teissier by Oscar Zariski, 1979-01-01
  9. Commutative Algebra by Oscar Zariski, 1959
  10. Collected Papers 4 Volumes Signed Edition by Oscar Zariski, 1972
  11. Commutative Algebra by Oscar, & Samuel, Pierre Zariski, 1962
  12. Introduction to the Problem of Minimal Models in the Theory of Algebraic Surfaces by Oscar Zariski, 1958
  13. Collected Papers 4 Volumes by Oscar Zariski, 1972
  14. Introduction to the problem of minimal models in the theory of algebraic surfaces (Publications of the Mathematical Society of Japan) by Oscar Zariski, 1958

21. AIM Reprint Library:
Listing for zariski, oscar. Viewing Page I. Abhyankar, Shreeram zariski,oscar. 2. Local uniformization on algebraic varieties. zariski, oscar.
http://www.aimath.org/library/library.cgi?database=reprints;mode=display;BrowseT

22. Algebraic Surfaces; Author: Zariski, Oscar; Paperback
Algebraic Surfaces. Author zariski, oscar Edition 2; Classics in Mathematics;Paperback 270 pages Published December 1995 SpringerVerlag Berlin and
http://www.opengroup.com/mabooks/354/354058658X.shtml
Algebraic Surfaces
English Books

German Books

Spanish Books

Sheet Music
... NEW RELEASES
Algebraic Surfaces
Author: Zariski, Oscar
Edition #2; Classics in Mathematics; Paperback
270 pages
Published: December 1995
ISBN: 354058658X This item non-returnable. Order may not be canceled. This text examines the field of algebraic surfaces. PRODUCT CODE: 354058658X USA/Canada: US$ 96.40 Australia/NZ: A$ 77.95 Other Countries: US$ 106.20 convert to your currency Delivery costs included if your total order exceeds US$50. We do not charge your credit card until we ship your order. Government and corporate Purchase Orders accepted without prior account application. PLACE AN ORDER To prepare to buy this item click "add to cart" above. You can change or abandon your shopping cart at any time before checkout. CHECK ORDER STATUS Check on order progress and dispatch. CHANGE OR CANCEL YOUR ORDER Please E-mail us within one hour The NetStoreUSA website is operated by Open Communications, Inc an Arizona corporation, which has successfully served the Internet community since 1994.

23. Biografia De Zariski, Oscar
Translate this page zariski, oscar. (Kobrin, 1899-Brookline, Masachusetts, 1986) Matemáticoestadounidense de origen ruso. Fue profesor en Harvard y
http://www.biografiasyvidas.com/biografia/z/zariski.htm
Inicio Buscador Utilidades Recomendar sitio
Enlaces
Zariski, Oscar (Kobrin, 1899-Brookline, Masachusetts, 1986) Matemático estadounidense de origen ruso. Fue profesor en Harvard y se especializó en el estudio de la geometría algebraica. Ideó una topología específica, denominada topología de Zariski Inicio Buscador Recomendar sitio

24. INSTITUTO ARGENTINO DE MATEMÁTICA
Chelsea. New York 1948. zariski, oscar. zariski, oscar. Collected papersv. Cambridge1972, 1973. zariski, oscar. Le probleme des modules pour les branches planes.
http://www.iam.conicet.gov.ar/Biblioteca/BD-LIBROS-Z.html
INSTITUTO ARGENTINO DE MATEMÁTICA BIBLIOTECA LIBRARY Base de Datos de Libros Books Data Base - Z - Zaanen, Adriaan C. Zaanen, Adriaan C. An introduction to the theory of integration North-Holland. AmsterdamInterscience. New York 1958 Zaanen, Adriaan Cornelis Zaanen, Adriaan Cornelis Integration North-Holland. AmsterdamWiley. New York 1967 Zaanen, Adriaan Cornelis Lienar analysis, measure and integral banach and Hilbert space, linear integral equations Interscience. New York 1953 Zabczyk, J. Da Prato, G.; Zabczyk, J. Ergodicity for infinite dimensional systems University press. Cambridge 1996 Zacharias, Max Zacharias, Max Elementargeometrie der Ebene und des Raumes Gruyter. Berlin, Leipzig 1930 Zacks, Shelemyahu Zacks, Shelemyahu Parametric statistical inference: theory and modern approaches (fotocopia cortada) Pergamon Press. Oxford 1981 Zadeh, A. Zadeh, A.; Desoer, Charles A. Linear System Theory - The State Space Approach McGraw-Hill Book Co.. N.York 1963-00-00 Zadeh, L. A. Zadeh, L. A.; Polak, E. System theory Tata McGraw-Hill. Bombay 1969 Zahradnik, Raymond L.

25. Past AMS Officers And Lecturers
1967, 1968. oscar zariski, 1969, 1970. Nathan Jacobson, 1971, 1972 Hassler Whitney, 1946. oscar zariski, 1947. Richard Brauer, 1948
http://www.ams.org/secretary/lecturers.html
American Mathematical Society
Past Officers and Lecturers
Presidents
  • J. H. Van Amringe, 1889, 1890 J. E. McClintock, 1891-1894 G. W. Hill, 1895, 1896 Simon Newcomb, 1897, 1898 R. S. Woodward, 1899, 1900 E. H. Moore, 1901, 1902 T. S. Fiske, 1903, 1904 W. F. Osgood, 1905, 1906 H. S. White, 1907, 1908 Maxime Bôcher, 1909, 1910 H. B. Fine, 1911, 1912 E. B. Van Vleck, 1913, 1914 E. W. Brown, 1915, 1916 L. E. Dickson, 1917, 1918 Frank Morley, 1919, 1920 G. A. Bliss, 1921, 1922 Oswald Veblen, 1923, 1924 G. D. Birkhoff, 1925, 1926 Virgil Snyder, 1927, 1928 E. R. Hedrick, 1929, 1930 L. P. Eisenhart, 1931, 1932 A. B. Coble, 1933, 1934 Solomon Lefschetz, 1935, 1936 R. L. Moore, 1937, 1938 G. C. Evans, 1939, 1940 Marston Morse, 1941, 1942 M. H. Stone, 1943, 1944 T. H. Hildebrandt, 1945, 1946 Einar Hille, 1947, 1948 J. L. Walsh, 1949, 1950 John von Neumann, 1951, 1952 G. T. Whyburn, 1953, 1954 R. L. Wilder, 1955, 1956 Richard Brauer, 1957, 1958 E. J. McShane, 1959, 1960 Deane Montgomery, 1961, 1962

26. Auteur - Zariski, Oscar
Translate this page Auteur zariski, oscar, 10 documents trouvés. Ouvrage Le probleme des modules pourles branches planes zariski, oscar (Principal) Hermann 1986 Ouvrage RdC (Z).
http://bibli.cirm.univ-mrs.fr/Auteur.htm?numrec=061912191919490

27. Búsqueda De ZARISKI, OSCAR
zariski, oscar$ , Se recuperó1 registro con la expresión zariski, oscar$ . registro 5941, zariski, oscar.
http://www.bibliotecas.unc.edu.ar/cgi-bin/Libreo-OPAC?accion=buscar&expresion=ZA

28. UMSNH - BIBLIOTECA DE LA ESCUELA DE CIENCIAS FISICO MATEMATICAS
Translate this page 1.- An Introduction to the Theory of Algebraic Surfaces Tema TopologiaQA-46 zariski, oscar 1ª edicion. 2.- Collected Papers Tema
http://www.fismat.umich.mx/biblioteca/aplicaciones/busca.php?menu=autor&T1=Zaris

29. UMSNH - BIBLIOTECA DE LA ESCUELA DE CIENCIAS FISICO MATEMATICAS
Translate this page 55.- Classical Galois Theory Tema Algebra Moderna QA-99 Gaal, Lisl 2ª edicion.56.- Collected Papers Tema Algebra Moderna QA-60 zariski, oscar 1ª edicion.
http://www.fismat.umich.mx/biblioteca/aplicaciones/busca.php?menu=tema&T1=Algebr

30. Zariski Topology
In this topology, named after oscar zariski, the closed sets are thesets consisting of the mutual zeroes of a set of polynomials.
http://www.fact-index.com/z/za/zariski_topology.html
Main Page See live article Alphabetical index
Zariski topology
In mathematics , the Zariski topology is a structure basic to algebraic geometry , especially since 1950. In this topology , named after Oscar Zariski , the closed sets are the sets consisting of the mutual zeroes of a set of polynomials. This definition indicates the kind of space that can be given a Zariski topology: for example, we define the Zariski topology on an n-dimensional vector space F n over a field F, using the definition above. That this definition yields a true topology is easily verified. Using the Noetherian property of the ring of polynomials over F, one sees that any closed set is the set of zeroes of a finite set of equations. The Zariski topology given to some finite-dimensional vector space doesn't depend on the specific basis chosen; for that reason it is an intrinsic structure. It is usually regarded as belonging to the underlying affine space , since it is also invariant by translations. One can generalise the definition of Zariski topology to projective spaces, and so to any algebraic variety as subsets of these. The general case of the Zariski topology is based on the

31. XYZ
Translate this page zariski, O. Algebraic surfaces. zariski, oscar, Commutative Algebra Volume 1.zariski, oscar, Commutative Algebra Volume 2. zariski, oscar, Algebraic Surfaces.
http://www.math.uvsq.fr/lama/CATALOGUE/XYZ.html
OUVRAGES DE LA BIBLIOTHEQUE Auteurs Titres XIAO, G. YAKOVLEV, A. Y. - YANEV, N. M. Transient Processes in Cell Proliferation Kinetics YAMADA, T. YANAGIHARA, H. YGER, A. Analyse complexe et distributions YOCCOZ, J-Ch (POLY-ORSAY) YOR, M. Exponential functionals of Brownian motion and related processes YOR, Marc Some aspects of Brownian motion Part I YOR, Marc Some aspects of Brownian motion Part II YOSIDA, K. YOSIDA, K. Functional Analysis ZAGIER, D.B. ZAK, F.L. Tangents and secants of algebraic varieties ZARISKI, O. Zariski, O. The Unreal Life of Oscar Zariski ZARISKI, O. [Zariski] Collected papers Vol 1 - Foundations of Algebraic Geometry and Resolution of Singularities ZARISKI, O. [Zariski] Collected papers Vol 2 - Holomorphic Functions and Linear Systems ZARISKI, O. [Zariski] Collected papers Vol 3 - Topology of Curves and Surfaces, and Spacial Topics in the Theory of Algebraic Varieties ZARISKI, O. ZARISKI, O. Algebraic surfaces ZARISKI, Oscar Commutative Algebra Volume 1 ZARISKI, Oscar Commutative Algebra Volume 2 ZARISKI, Oscar Algebraic Surfaces ZEITOUNI, O.

32. Oscar Zariski
Article on oscar zariski from WorldHistory.com, licensed from Wikipedia, the freeencyclopedia. Return to World History (home) Main Article Index oscar zariski.
http://www.worldhistory.com/wiki/O/Oscar-Zariski.htm
World History (home) Encyclopedia Index Localities Companies Surnames ... This Week in History
Oscar Zariski
Oscar Zariski was one of the most influential mathematicians working in the field of algebraic geometry in the twentieth century . He was born as Ascher Zaritsky on 24 April 1899, in Kobrin (now in Belarus , then in Russia) in a Jewish family. He was a student at the University of Kiev in 1918, moving to Rome to study in 1920. He became a disciple of the Italian school of algebraic geometry , studying with Guido Castelnuovo, Federigo Enriques and Francesco Severi. He wrote a doctoral dissertation in 1924, on a topic in Galois theory. It was when it came to be published that he accepted a suggestion to change his name for professional purposes. He emigrated to the USA in 1927, supported by Solomon Lefschetz . He had a position at Johns Hopkins University , where he became professor in 1937. It was this period that he wrote the celebrated book Algebraic Surfaces , intended as a summation of the work of the Italian school, but in effect its swansong, too. It was published in 1935. It was reissued many years later, with copious notes showing how much the field of algebraic geometry had changed, not only foundationally but in emphasis. It is still an important reference. It seems to have been this work that set the seal of Zariski's discontent with the approach of the Italians to birational geometry . The question of rigour he addressed by recourse to commutative algebra . The Zariski topology , as it was later known, is adequate for

33. World History: Ortler, Oetzthal And Stubai Ranges Thru Osan
oscar Traynor, oscar Tschirky. oscar V. Peterson, oscar Wilde. oscar zariski,oscar Zeta Acosta. oscarshall, oscarville, Alaska. Osceola, Osceola (disambiguation).
http://www.worldhistory.com/wiki/On_Oz024.htm
WorldHistory.com Bringing History to Life
Return to: Main Article Index Home Page

INDEX OF ARTICLES: Ortler, Oetzthal and Stubai Ranges thru Osan
from Wikipedia , the free encyclopedia
To find an article, follow the appropriate link below. Ortler, Oetzthal and Stubai Ranges Ortley, South Dakota Ortolan Bunting Orton ... Osan
Return to WorldHistory.com home page.
Content from Wikipedia.com is licensed under the GNU Free Documentation License
You may copy and modify it as long as the entire work (including additions) remains under this license.
You must provide a link to http://www.gnu.org/copyleft/fdl.html
About Us
Contact Us

34. Oscar Zariski: Collected Papers - Vol. 4 - The MIT Press
oscar zariski Collected Papers Vol. 4 Equisingularity on AlgebraicVarieties Edited by J. Lipman and B. Teissier. OF RELATED INTEREST
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7077

35. Oscar Zariski: Collected Papers - Vol. 2 - The MIT Press
oscar zariski Collected Papers Vol. 2 Holomorphic Functions and LinearSystems Edited by M. Artin and D. Mumford. OF RELATED INTEREST
http://mitpress.mit.edu/catalog/item/default.asp?sid=055FCC0F-F89F-428A-8932-872

36. The Mathematics Genealogy Project - Oscar Zariski
oscar Ascher zariski Biography Ph.D. Università di Roma 1925. According to ourcurrent online database, oscar zariski has 15 students and 453 descendants.
http://www.genealogy.ams.org/html/id.phtml?id=18926

37. Oscar Zariski: Foundations Of Algebraic Geometry & Resolution Singularities
oscar zariski Foundations of Algebraic Geometry Resolution Singularities Search for books at mathematicsbooks.org. mathematicsbooks.org.
http://mathematicsbooks.org/0262080494.html

Home
Search High Volume Orders Links ... Philosophy of Mathematics Additional Subjects Earth naciste Milica Uvalic Cosmology Creation Statistics Kinesiology ... Progress in Medicinal Chemistry
Written by H. Hironaka D. Mumford
Published by MIT Press (May 1972)
ISBN 0262080494
Price $75.00
Look for related books on other categories Mathematics Still didn't find what you want? Try Amazon search Search: All Products Books Magazines Popular Music Classical Music Video DVD Baby Electronics Software Outdoor Living Wireless Phones Keywords: Or try to look for at Fetch Used Books, at or at CampusI
See Also Ambulatory medical care Care Differential Equations Generation James Grippando Pittsburgh Revealed: Photographs Since 1850 ... Vector Mechanics for Engineers Dynamics
Our Bookstores Cooking Books Games Books Computer Books Health Books ... Music Books Web Resources Amazon Australian Mathematics Trust European Mathematical Society (EMS) Kappa Mu Epsilon - Official Site ... Exchange links with us

38. Search Results
Translate this page Mathematik. Neue Folge, 4). Zbl 0067.38904 5 zariski (oscar). — Studiesin equisingularity, Amer. Zbl 0146.42502 6 zariski (oscar). — Studies
http://www.numdam.org/numdam-bin/search?h=nc&id=BSMF_1971__99__305_0&format=comp

39. Résultats De La Recherche
Translate this page Numdam MR 18,511a Zbl 0075.30401 11 zariski (oscar). — Surla normalité analytique des variétés normales, Ann. Inst.
http://www.numdam.org/numdam-bin/recherche?h=nc&id=BSMF_1963__91__113_0&format=c

40. Zariski Topologie
V tomto topologie, pojmenovaný po oscar zariski, uzavrené souborysoubory se složí z vzájemných nul souboru polynomials.
http://wikipedia.infostar.cz/z/za/zariski_topology.html
švodn­ str¡nka Tato str¡nka v origin¡le
Zariski topologie
V matematika Zariski topologie je struktura z¡kladn­ k algebraick¡ geometrie , obzvl¡Å¡tě protože 1950. V tomto topologie , pojmenovan½ po Oscar Zariski , uzavřen© soubory soubory se slož­ z vz¡jemn½ch nul souboru polynomials. Tato definice uk¡Å¾e druh prostoru, kter½ může se konat Zariski topologie: např­klad, my vymezit Zariski topologie na n-rozměrn½ prostor vektoru F n přes pole F, použ­vat definici nahoře. To tato definice d¡ opravdovou topologii je snadno ověřil. Použ­vat Noetherian majetek svazu polynomials přes F, jeden vid­, že někter½ zavřel soubor je soubor nul konečn½ soubor rovnic. Zariski topologie dan¡ někter½m konečn½-rozměrn½ vektorov½ rozestup se nespol©h¡ na specifickou b¡zi volen½; pro ten důvod to je prav¡ struktura. To je obvykle pozorov¡no jak patřit k fundament¡ln­ affine prostor , protože to je tak© neměnn½ překlady. Jeden může zevÅ¡eobecnit definici Zariski topologie k projective prostory, a tak k někter©mu algebraick¡ rozmanitost jako podmnožiny těchto. Gener¡l př­pad Zariski topologie je um­stěn½ na

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter