Geometry.Net - the online learning center
Home  - Scientists - Wantzel Pierre
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Wantzel Pierre:     more detail

41. Manfred Boergens - Briefmarke Des Monats Dezember 2003
Translate this page pierre Laurent wantzel konnte 1836 genau angeben, welche regelmäßigen n-Ecke konstruierbarsind, und er lieferte 1837 den Beweis für die Unmöglichkeit der
http://www.fh-friedberg.de/users/boergens/marken/briefmarke_03_12.htm
Briefmarke des Monats Liste aller Briefmarken
vorige Marke
zur Leitseite
Briefmarke des Monats Dezember 2003
Portugal 2002
Zirkel und Lineal Axiomen und Postulaten des Euklid
Die "klassischen" Probleme
  • Quadratur des Kreises
  • Dreiteilung des Winkels
im Jahr 1796. Diese Leistung stellte die erste bedeutende Erweiterung der Geometrie seit der Antike dar. Sie wird auf der Briefmarke des Monats April 2003 Evariste Galois Pierre Laurent Wantzel Ferdinand von Lindemann
Konstruierbare Zahlen alle rationalen Zahlen konstruierbar Konstruktion von Quadratwurzeln Den geometrischen Konstruktionen mit Zirkel und Lineal entsprechen diejenigen reellen Zahlen, die sich aus der Zahl 1 in endlich vielen Schritten durch Anwendung der vier Grundrechenarten und des Ziehens von Quadratwurzeln erzeugen lassen. Das bedeutet, dass z.B. die Nullstellen von Polynomen 2. Grades mit rationalen Koeffizienten mit Zirkel und Lineal konstruierbar sind. n k p p r mit verschiedenen Fermat'schen Primzahlen p i (siehe Briefmarke des Monats April 2003
Konstruierbare Zahlen und die klassischen geometrischen Probleme

Stand 11.10.2003 vorige Marke Liste aller Briefmarken Mathematische Philatelie zur Leitseite

42. Online Encyclopedia - Ruler And Compass Constructions
which regular polygons can be constructed with ruler and compass alone was settledby Carl Friedrich Gauss in 1796 and (sufficiency) and pierre wantzel in 1836
http://www.yourencyclopedia.net/Ruler_and_compass_constructions.html
Encyclopedia Entry for Ruler and compass constructions
Dictionary Definition of Ruler and compass constructions

A number of ancient problems in geometry involve the construction of lengths or angles using only an idealised ruler and compass . The ruler is indeed a straightedge , and may not be marked; the compass may only be set to already constructed distances, and used to describe circular arcs. Some famous ruler-and-compass problems have been proved impossible, in several cases by the results of Galois theory In spite of these impossibility proofs, some mathematical amateurs persist in trying to solve these problems. Many of them fail to understand that many of these problems are trivially soluble provided that other geometric transformations are allowed: for example, squaring the circle is possible using geometric constructions, but not possible using ruler and compasses alone. Mathematician Underwood Dudley has made a sideline of collecting false ruler-and-compass proofs, as well as other work by mathematical cranks , and has collected them into several books.

43. Ruler-and-compass Construction - Wikipedia, The Free Encyclopedia
Gauss conjectured that this condition was also necessary, but he offeredno proof of this fact, which was proved by pierre wantzel in (1836).
http://en.wikipedia.org/wiki/Ruler_and_compass_constructions
Ruler-and-compass construction
From Wikipedia, the free encyclopedia.
(Redirected from Ruler and compass constructions
A number of ancient problems in geometry involve the construction of lengths or angles using only an idealized ruler and compass The most famous ruler-and-compass problems have been proven impossible, in several cases by the results of Galois theory . In spite of these impossibility proofs, some mathematical novices persist in trying to solve these problems. Many of them fail to understand that many of these problems are trivially solvable provided that other geometric transformations are allowed: for example, squaring the circle is possible using geometric constructions, but not possible using ruler and compass alone. Mathematician Underwood Dudley has made a sideline of collecting false ruler-and-compass proofs, as well as other work by mathematical cranks , and has collected them into several books. Table of contents 1 Ruler and compass 2 Constructible points and lengths 3 Impossible constructions 3.1 Squaring the circle ... edit
Ruler and compass
The "ruler" and "compass" of ruler-and-compass constructions is an idealization of rulers and compasses in the real world:
  • The ruler is infinitely long, but it has no markings on it (thus making it a

44. WikipediaRequested Articles/mathematics - Wikipedia
J. Barkley Rosser Paolo Ruffini - pierre Samuel - pierre Samuel - Dietmar Saupe Euler sangle - Fast wavelet transform - Gauss-wantzel theorem - Harmonic
http://en.wikipedia.org/wiki/Wikipedia:Requested_articles/mathematics

45. Your Search Ecouen At Your Search .co.uk - Yoursearch.co.uk
École speciale du Commerce. pierre wantzel attended primary schoolin Ecouen, near Paris, where the family lived. Even at a very
http://www.yoursearch.co.uk/Ecouen.htm

46. Niemo¿no¶æ Konstrukcyjnej Trysekcji Dowolnego K±ta
Te uwagi Gaussa zamienil na scisly dowód pierre L. wantzel (18141848) w 1837r. wantzel byl repetytorem w École Polytechnique w Paryzu, tej samej, w
http://ux1.math.us.edu.pl/~szyjewski/FAQ/konstruk/trysekcj.htm
Niemo¿no¶æ konstrukcyjnej trysekcji dowolnego k±ta
>W szkole matematyczka u¶wiadomi³a mnie, ¿e nie mo¿na przeprowadziæ trysekcji
>k±ta. Zapomnia³a tylko przeprowadziæ dowodu.
>Czy kto¶ móg³by podaæ mi dowód na to, ¿e podzielenie k±ta na trzy równe
>czê¶ci jest niemo¿liwe?
Niemo¿liwe jest podanie metody podzielenia cyrklem i linijk± dowolnego k±ta na trzy równe czê¶ci. K±ty dziel± siê na takie, które da siê podzieliæ na trzy czê¶ci cyrklem i linijk± (np. 90 ), oraz na takie takie, których cyrklem i linijk± nie da siê podzieliæ na trzy równe czê¶ci (np. 120
Oczywi¶cie, je¶li u¿yæ odpowiednich narzêdzi, to za ich pomoc± mo¿na dokonaæ trysekcji dowolnego k±ta (tzw. konstrukcja neusis - tak Dinostarates dokona³ trysekcji za pomoc± kwadratrysy).
Dowód niewykonalno¶ci trysekcji wymaga narzêdzi - punkty p³aszczyzny trzeba zinterpretowaæ jako liczby zespolone i wiedzieæ co to jest cia³o, rozszerzenie cia³a oraz stopieñ rozszerzenia (a wiêc i wymiar przestrzeni wektorowej).
Jak to siê wie, to sprawa jest prosta - sprawdza siê, ¿e wszystkie punkty, które mo¿na zbudowaæ z danego odcinka jednostkowego cyrklem i linijk± odpowiadaja liczbom zespolonym, które przy ka¿dym kroku konstrukcji albo nale¿a³y do ju¿ zbudowanego cia³a, albo s± pierwiastkami trójmianu kwadratowego (o wspó³czynnikach z ju¿ zbudowanego cia³a), czyli w ka¿dym kroku konstrukcji nowe cia³o jest albo tym samym co w poprzednim kroku, albo jego rozszerzeniem stopnia 2. Dlatego stopieñ rozszerzenia (

47. Search Results For Jean-pierre Leaud - Encyclopædia Britannica
pierre Laurent wantzel University of St.Andrews Biographical sketch of this 19thcentury French mathematician known for solving equations by radicals.
http://search.britannica.com/search?query=jean-pierre leaud&ct=igv&fuzzy=N&show=

48. Exkurs: Die Klassischen Probleme Der Antike
Translate this page Der Hinweis auf pierre Laurent wantzel (1814 - 1848), der 1837 einen Beweis überdie Unmöglichkeit der Winkeldreiteilung und der Würfelverdoppelung mit
http://did.mat.uni-bayreuth.de/~matthias/geometrieids/pythagoras/html/node6.html
Next: Hippokrates von Chios Up: Previous: Beginning of the document: Pythagoras und kein Ende
Exkurs: Die klassischen Probleme der Antike
Der Erfolg bei den Mond-Quadraturen mag der Grund sein, warum die antiken Wissenschaftler (und nicht nur diese) glaubten, auch die Quadratur des Kreises Dreiteilung eines bliebigen Winkels und der unter dem Namen klassische Probleme der Antike
APPOS
AUSS (1777 - 1855) und Evariste G ALOIS ANTZEL Auch der Transzendenzbeweis von durch Ferdinand L INDEMANN The Lady's Diary or Woman's Almanach
Next: Hippokrates von Chios Up: Previous: Beginning of the document: Pythagoras und kein Ende Matthias Ehmann

49. Lebensdaten Von Mathematikern
Translate this page 1768 - 1843) Wallis, John (23.11.1616 - 28.10.1703) Wang, Hsien Chung (1918 - 1978)Wangerin, Albert (1844 - 1933) wantzel, pierre (1814 - 1848) Waring, Edward
http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
Diese Seite ist dem Andenken meines Vaters Otto Hebisch (1917 - 1998) gewidmet. By our fathers and their fathers
in some old and distant town
from places no one here remembers
come the things we've handed down.
Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
Abel, Niels Henrik (5.8.1802 - 6.4.1829)
Abraham bar Hiyya (1070 - 1130)
Abraham, Max (1875 - 1922)
Abu Kamil, Shuja (um 850 - um 930)
Abu'l-Wafa al'Buzjani (940 - 998)
Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843)

50. Ruler And Compass Constructions - Encyclopedia Article About Ruler And Compass C
. Click the link for more information. ) and pierre wantzel in 1836Centuries 18th century 19th century - 20th century Decades
http://encyclopedia.thefreedictionary.com/ruler and compass constructions
Dictionaries: General Computing Medical Legal Encyclopedia
Ruler and compass constructions
Word: Word Starts with Ends with Definition A number of ancient problems in geometry Geometry is the branch of mathematics dealing with spatial relationships. From experience, or possibly intuitively, people characterize space by certain fundamental qualities, which are termed axioms in geometry. Such axioms are insusceptible of proof, but can be used in conjunction with mathematical definitions for points, straight lines, curves, surfaces, and solids to draw logical conclusions.
Click the link for more information. involve the construction of lengths or angles This article is about angles in geometry. See:
  • Fly fishing for the technique of using a bait and hook to catch fish.
  • Angles for the Germanic tribe that moved to Britain.
  • Angle, Pembrokeshire for the place in Wales.
  • Angle (professional wrestling) for 'angles' in professional wrestling.
An angle is the figure formed by two rays sharing a common endpoint, called the vertex of the angle. Angles are studied in geometry and trigonometry.
Click the link for more information.

51. Problemas De La Antig Edad Clasica
pierre wantzel (1814-1848) probó que un ánguloa es trisecable con regla y compás si el polinomio 4x 3 - 3x - cos(a) es
http://www.arrakis.es/~mcj/clasicos.htm

52. The Classical Greek Problems
In 1837 pierre wantzel proved that the classical Greek problem of a squaring a cubecould not be solved with the restriction of using only straight lines and
http://www.math.rutgers.edu/courses/436/Honors02/classical.html
The Classical Greek Problems
Patricia DiJoseph
There were three problems that the ancient Greeks (600BC to 400AD) tried unsuccssfully to solve by Euclidean methods, all of which were proven unsolvable by these means as much as two thousand years later, as a result of progress in algebra, and the idea of analytic geometry in the sense of Descartes. The Greeks wanted to solve these problems using only a Euclidean constructions, or as they themselves called them, "plane" methods. Though they were never able to do so ( as they cannot be done this way, they did find a series of remarkably clever constructions using more powerful techniques, involving so-called "solid" and "mechanical" methods, as well as a technique called "verging". Then, in the 19th century, the impossibility of finding purely Euclidean constructions for these problems was finally proved. The three classical Greek problems were problems of geometry: doubling the cube, angle trisection, and squaring a circle. Duplication of the cube is the problem of determining the length of the sides of a cube whose volume is double that of a given c ube. A cube by definition is a three dimensional shape comprised of a height, width, and depth all of the same magnitude s. To find its volume, one multiplies the length (s) by the width (s) and then by the depth (s): the volume is s(s(s or s3. Diagram not converted, here and below

53. Quadrature Du Cercle.
pierre wantzel en 1837
http://faq.maths.free.fr/html/node152.html
Next: Up: Previous: Inscription d'un cercle dans Contents
Quadrature du cercle.
Malheureusement, Faq de fr.sci.maths 2003-12-14

54. Pravítko-a-konstrukce Obvodu
polygonu moci být postavený s pravítko a kompas osamocený byl usazenýCarl Friedrich Gauss v 1796 a (dostatek) a pierre wantzel v 1836 (nutnost
http://wikipedia.infostar.cz/r/ru/ruler_and_compass_constructions.html
švodn­ str¡nka Tato str¡nka v origin¡le
Prav­tko-a-konstrukce obvodu
Množstv­ starověk½ch probl©mů v geometrie zahrnovat konstrukci d©lek nebo použ­v¡n­ ºhlů jedin½ idealizovan½ prav­tko a kompas prav­tko je opravdu straightedge , a smět ne b½t označen½; kompas může jen b½t soubor k už budoval vzd¡lenosti, a použit½ popisovat kruhov© oblouky. Nějak© slavn© prav­tko-a-kompasov© studie byly uk¡zal se nemožn½, v několik př­padech v½sledky Galois teorie Ve vzdoru těchto důkazů nemožnosti, někteř­ matematičt­ amat©Å™i pokračuj­ v snažit se vyřeÅ¡it tyto probl©my. Mnoho z nich nedok¡zat rozumět tomu mnoho z těchto studie jsou trivially rozpustn½ stanovil, že jin© geometrick© transformace jsou povoleny: např­klad, ohraňov¡n­ kruh je možn© použ­v¡n­ geometrick© stavby, ale nemožn½ použ­vat prav­tko a buzoly osamocen½. Matematik Underwood Dudley dělal sideline sběrn©ho faleÅ¡n©ho prav­tka-a-důkazy kompasu, stejně jako jin¡ pr¡ce matematick½ ztřeÅ¡těn© n¡pady , a vyzvedl si je do několik knih.

55. Polygon
polygonu moci být postavený s pravítko a kompas osamocený byl usazenýCarl Friedrich Gauss v 1796 (dostatek) a pierre wantzel v 1836 (nutnost
http://wikipedia.infostar.cz/p/po/polygon.html
švodn­ str¡nka Tato str¡nka v origin¡le
Polygon
polygon (od Řek polytechnika , pro " mnoho ", a gwnos , pro " ºhel ") je uzavřen½ rovinn½ cesta složen½ z konečn©ho č­sla př­mka segmenty. Term­n polygon někdy tak© pop­Å¡e vnitřek polygonu (voln¡ plocha to tato cesta vlož­) nebo spojen­ obou. Př­mka segmenty, kter© tvoř­ polygon b½t nazvan½ jeho strany nebo okraje a body kde strany se sejdou b½t polygon #genitive vertices Tabulka s obsahem showTocToggle (" přehl­dka ", " se schovat ") 1 jm©na a p­Å¡e
2 vlastnosti

3 důvod k pokusu polygonu

4 souvisej­c­ odkazy
Jm©na a druhy
Jednoduch½ non-konvexn­ Å¡estiºheln­k Komplexn­ polygon Polygony jsou jmenov¡ny shodovat se k množstv­ stran, kombinovat řeckou patu se sufixem - gon , e. g. pětiºheln­k dodecagon trigonum a čtyřºheln­k jsou odchylky. Pro větÅ¡­ č­sla, matematici ps¡t č­slice s¡m, eg 17-gon . Proměnn¡ může dokonce se už­vat, obvykle n-gon . Toto je užitečn© jestliže množstv­ stran je použito ve formuli. Jm©na polygonu Jm©no Strany trigonum čtyřºheln­k pětiºheln­k Å¡estiºheln­k ... nonagon nebo ennagon desetiºheln­k hendecagon nebo undecagon dodecagon hectagon megagon googolgon Taxonomic klasifikace polygonů je objasněna n¡sleduj­c­m stromem:
  • Polygon je jednoduch½ jestliže to je vyobrazeno jeden, non-kř­Å¾­c­ se hranice; jinak to se jmenuje

56. Quadratura Do Círculo
Translate this page da impossibilidade de se efectuarem determinadas construções geométricas apenascom régua e compasso foi o francês pierre Laurent wantzel, em 1837.
http://www.fc.up.pt/mp/jcsantos/quadratura.html
Introdução
O problema da quadratura do círculo é um dos três problemas clássicos da Geometria grega; consiste em construir, usando apenas régua e compasso, um quadrado com a mesma área que a de um círculo dado. Como aconteceu com os restantes dois problemas, demonstrou-se no século XIX que o problema da quadratura do círculo não tem solução. Essa demonstração foi obtida em várias fases. Em 1801, no seu livro Disquisitiones Arithmeticae , o matemático alemão Carl Friedrich Gauss afirmou que, dado um número natural ímpar n
  • é possível construir um polígono regular com n lados usando apenas régua e compasso; n pode ser escrito como produto de números primos distintos da forma 2 k + 1 (os chamados «primos de Fermat », dos quais só se conhecem cinco: 3, 5, 17, 257 e 65537).
  • No entanto, Gauss apenas publicou a demonstração de que a segunda condição implica a primeira. O primeiro matemático a publicar efectivamente uma demonstração da impossibilidade de se efectuarem determinadas construções geométricas apenas com régua e compasso foi o francês Pierre Laurent Wantzel , em 1837.

    57. Trisecting An Angle Is Possible
    The impossibility of trisecting an angle with a straightedge(unmarked) and a compasswas shown by the French mathematician pierre wantzel in 1882 ;but no one
    http://www.reformindia.com/wwwboard/messages/4383.htm
    trisecting an angle is possible
    Follow Ups Post Followup Discussion Group - Reform India FAQ Posted by manish garg on May 04, 2004 at 23:58:01: In Reply to: Re: requestion of President Kalam's email id posted by kaleeswaran.P on January 26, 2004 at 01:38:48: To
    The honourable President of India,
    Dr. A.P.J. Abdul Kalam. Subject : Trisecting an angle is possible with a straightedge(not marked) and a compass alone.
    Respected sir,
    Pranam.
    Ancient Greeks were great mathematicians, they discovered many construction problems out of which the three constuction problems of trisecting an angle,doubling a cube, and squaring a circle were impossible with a straightedge(unmarked) and a compass alone. The impossibility of trisecting an angle with a straightedge(unmarked) and a compass was shown by the French mathematician Pierre Wantzel in 1882 ;but no one till today has made it possible.
    Sir, I have made possible the famous construction problem of trisecting an angle with a straightedge(unmarked) and a compass alone. I am a student of class 10th(tenth) and I have worked out for two months for solving the problem of trisecting an angle. It was only a coincidence that I came to know that the construction problem of trisecting an angle with a straightedge(not marked) and a compass alone is one of the impossible construction problems ;I have reported this matter to some foreign institutes via email and they are asking for the method with great curiosity, but I am afraid if I give this method to any of these institutes ,the name before this invention would not be of our country.

    58. Philosophical Themes From CSL:
    and compasses. Indeed, in 1837 pierre wantzel demonstrated the impossibilityof a straightedge and compasses solution. 8. Notes.
    http://myweb.tiscali.co.uk/cslphilos/euclid.htm
    A Short Account of
    Euclid’s Elements , VI.13
    Home Online Articles Links ... Recommend a Friend Euclid’s Elements (c. 300 bc) is probably the most influential mathematical treatise of all time. The Elements comprises thirteen books, establishing no fewer than 467 propositions. Euclid’s system is axiomatic. The work opens with a statement of postulates and common notions, and every book within it begins with a statement of definitions relevant in that book. Each proposition is established by strict deductive reasoning from these axioms and from other previously established propositions. illustrates these and other general features of the Elements. In T.L. Heath’s 1925 translation, on which this discussion is based, VI.13 begins with a statement of the proposition: “To two given straight lines, to find a mean proportional”. Since Book VI of the Elements “looks at the application of the results of book five,” which itself “expounds the Eudoxan theory of proportion,” VI.13, on constructing a mean proportional, fits neatly into this general scheme.

    59. Geometriske Konstruktioner Med Passer Og Lineal
    Først i 1837 blev det af pierre Laurent wantzel (1814 1848) bevist, at det erumuligt at tredele en generel vinkel og fordoble en terning med passer og
    http://www.matematiksider.dk/klassisk.html
    Geometriske konstruktioner
    Det var grækerne, der førte geometrien frem til en høj grad af fuldkommenhed. Her spillede den såkaldte Pythagoræer-skole en helt central rolle. Dette religiøst filosofiske broderskab, der var blevet grundlagt af navnkundige Pythagoras (6. århundrede f. Kr.), forsøgte at udtrykke alle forhold i naturen ved forhold mellem naturlige tal. Opdagelsen af de såkaldte usigelige tal , altså de tal, vi i dag kalder irrationale , var så stor en skuffelse for pythagoræerne, at de i høj grad forlod aritmetikken til fordel for geometrien. I geometrien kan man for eksempel konstruere en længde, der er lig med kvadratroden af 2, hvorimod tallet ikke kan skrives som en brøk mellem hele tal, idet det jo ikke er rationalt. Længden kan konstrueres som diagonalen i en retvinklet trekant, hvor begge kateter har længden 1.
    Herefter begyndte en lang æra med geometrien i centrum. Da den rette linje og cirklen hører til de mest ædle geometriske figurer er det ikke svært at forstå, at man begyndte at foretage konstruktioner med passer og lineal. Og opgaverne var ikke af praktisk art, som tilfældet havde været med ægypterne. Grækerne betragtede geometrien for matematikkens egen skyld. Man var ikke interesseret i tilnærmede løsninger. Geometrien blev betragtet som en ophøjet åndelig disciplin, som skulle besjæle eleverne med moralsk kraft, så de kunne begå handlinger til gavn for almenheden. Platon (427 - 347 f.Kr.) var en af geometriens store fortalere. Han mente, at man skulle lære at trække tankeindholdet, selve idéen, ud fra det konkrete.

    60. Construções Com Régua E Compasso.
    Translate this page Isto foi feito em 1837 por pierre wantzel (1814-1848) que, além disso, mostroua impossibilidade da duplicação do cubo e da trisseção do ângulo.
    http://socrates.if.usp.br/~pellicer/x/algebra/algebraIII/trab1/node2.html
    Next: Up: Previous:
    , com
    DEFINIÇO 1 Suponha dados os pontos e
    , régua e compasso, é possível construir o segmento Denotaremos Note que é um corpo. Como , basta provar que: i) , ii) , iii) De fato:
    Seja . A partir de , construímos 1) Diremos que uma reta r , se r contém dois pontos de . 2) Um círculo C se o seu centro é um ponto de e tal que o raio de C é igual à Temos as operações elementares: i) interceptar retas de , ii) interceptar círculos de , iii) interceptar retas com círculos de OBSERVAÇO 2.1 Podemos perceber que essas operações são aquelas possíveis de serem feitas com régua e compasso, e que foram feitas a partir de pontos já construídos e distâncias conhecidas.
    DEFINIÇO 2 é chamado o conhunto dos pontos construtíveis a partir de De forma análoga, podemos construir a partir de . Generalizando, podemos construir a partir de . Chamamos então de o conjunto dos pontos construtíveis a partir de Se P , P = (x,y), diremos que x,y são coordenadas de P. Podemos definir então o seguinte conjunto : Por exemplo, temos que:

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter