Geometry.Net - the online learning center
Home  - Scientists - Wantzel Pierre
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Wantzel Pierre:     more detail

21. References For Wantzel
References for pierre Laurent wantzel. Articles F Cajori, pierreLaurent wantzel, Bull. Amer. Math. Soc. 24 (1) (1917), 339347.
http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZ5844.htm
References for Pierre Laurent Wantzel
Articles:
  • F Cajori, Pierre Laurent Wantzel, Bull. Amer. Math. Soc.
  • A de Lapparent, Ecole Polytechnique: Livre du Centenaire, 1794-1894
  • G Pinet, Ecrivains et Penseurs Polytechniciens (Paris, 1902), 20.
  • Saint-Venant, Biographie: Wantzel, Close this window or click this link to go back to Wantzel
    Welcome page
    Biographies Index
    History Topics Index
    Famous curves index ... Search Suggestions JOC/EFR April 1997 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Wantzel.html
  • 22. Full Alphabetical Index
    Translate this page John (553*) Wall, C Terence (545*) Wallace, William (261*) Wallis, John (784*)Wang, Hsien Chung (649) Wangerin, Albert (46*) wantzel, pierre (1020) Waring
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Flllph.htm
    Full Alphabetical Index
    Click on a letter below to go to that part of this file. A B C D ... XYZ Click below to go to the separate alphabetical indexes A B C D ... XYZ The number of words in the biography is given in brackets. A * indicates that there is a portrait.
    A
    Abbe , Ernst (602*)
    Abel
    , Niels Henrik (2899*)
    Abraham
    bar Hiyya (240)
    Abraham, Max

    Abu Kamil
    Shuja (59)
    Abu'l-Wafa
    al'Buzjani (243)
    Ackermann
    , Wilhelm (196)
    Adams, John Couch

    Adams, J Frank

    Adelard
    of Bath (89)
    Adler
    , August (114) Adrain , Robert (79) Aepinus , Franz (124) Agnesi , Maria (196*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (60) Ahmes Aida Yasuaki (114) Aiken , Howard (94) Airy , George (313*) Aitken , Alexander (825*) Ajima , Chokuyen (144) Akhiezer , Naum Il'ich (248*) al'Battani , Abu Allah (194) al'Biruni , Abu Arrayhan (306*) al'Haitam , Abu Ali (269*) al'Kashi , Ghiyath (73) al'Khwarizmi , Abu (123*) Albanese , Giacomo (282) Albert, Abraham Adrian (158*) Albert of Saxony Alberti , Leone (181*) Albertus Magnus, Saint (109*) Alcuin of York (237*) Aleksandrov , Pave (160*) Alembert , Jean d' (291*) Alexander , James (130*) Amringe , Howard van (354*) Amsler , Jacob (82) Anaxagoras of Clazomenae (169) Anderson , Oskar (67) Andreev , Konstantin (117) Angeli , Stefano degli (234) Anstice , Robert (209) Anthemius of Tralles (55) Antiphon the Sophist (125) Apollonius of Perga (276) Appell , Paul (1377) Arago , Dominique (345*) Arbogast , Louis (87) Arbuthnot , John (251*) Archimedes of Syracuse (467*) Archytas of Tarentum (103) Arf , Cahit (1452*) Argand , Jean (81) Aristaeus the Elder (44) Aristarchus of Samos (183)

    23. Four Problems Of Antiquity
    The problem had been settled in 1837 by pierre Laurent wantzel (18141848) whohad proven that there was no way to trisect a 60 o angle in the classical
    http://www.cut-the-knot.org/arithmetic/antiquity.shtml
    CTK Exchange Front Page
    Movie shortcuts

    Personal info
    ...
    Recommend this site
    Four Problems Of Antiquity
    Three geometric questions raised by the early Greek mathematicians attained the status of classical problems in Mathematics. These are:
  • Doubling of the cube
    Construct a cube whose volume is double that of a given one.
  • Angle trisection
    Trisect an arbitrary angle.
  • Squaring a circle
    Construct a square whose area equals that of a given circle. Often another problem is attached to the list:
  • Construct a regular heptagon (a polygon with 7 sides.) The problems are legendary not because they did not have solutions, or the solutions they had were unusually hard. No, numerous simple solutions have been found yet by Greek mathematicians. The problem was in that all known solutions violated an important condition for this kind of problems, one condition imposed by the Greek mathematicians themselves: Valid solutions to the construction problems are assumed to consist of a finite number of steps of only two kinds: drawing a straight line with a ruler (or rather a straightedge as no marks are allowed on the ruler) and drawing a circle. You are referred to solutions of problems and as examples of existent solutions. That no solution exists subject to the self-imposed constraints have been proven only in the 19th century.
  • 24. Fermat Number
    regular ngon is constructible. The necessity of this condition wasnot proved until 1836 by pierre wantzel. A positive integer n is
    http://www.fact-index.com/f/fe/fermat_number.html
    Main Page See live article Alphabetical index
    Fermat number
    A Fermat number , named after Pierre de Fermat who first studied them, is a positive integer of the form where n is a nonnegative integer. The first eight Fermat numbers are
    F F F F F F F F
    If 2 n + 1 is prime , it can be shown that n must be a power of 2. In other words, every prime of the form 2 n + 1 is a Fermat number, and such primes are called Fermat primes . The only known Fermat primes are F F Table of contents 1 Basic Properties
    2 Primality of Fermat numbers

    3 Factorisation of Fermat numbers

    4 Relationship to Constructible Polygons
    Basic Properties
    The Fermat numbers satisfy the following recurrence relations for n share a common factor i j and F i and F j have a common factor a > 1. Then a divides both and F j ; hence a divides their difference 2. Since a > 1, this means a = 2. This is a contradiction , because each Fermat number is clearly odd. As a corollary , we obtain another proof of the infinitude of the prime numbers: for each F n , choose a prime factor p n p n Here are some other basic properties of the Fermat numbers:
    • If n F n mod 6). (See

    25. Polygon
    regular polygons can be constructed with ruler and compass alone was settled by CarlFriedrich Gauss in 1796 (sufficiency)and pierre wantzel in 1836 (necessity
    http://www.fact-index.com/p/po/polygon.html
    Main Page See live article Alphabetical index
    Polygon
    A polygon (from the Greek poly , for "many", and gwnos , for "angle") is a closed planar path composed of a finite number of straight line segments. The term polygon sometimes also describes the interior of the polygon (the open area that this path encloses) or the union of both. The straight line segments that make up the polygon are called its sides or edges and the points where the sides meet are the polygon's vertices Table of contents 1 Names and types
    2 Properties

    3 Point in polygon test

    4 Related links
    Names and types
    A simple non-convex hexagon A complex polygon Polygons are named according to the number of sides, combining a Greek root with the suffix -gon , e.g. pentagon dodecagon . The triangle and quadrilateral are exceptions. For larger numbers, mathematicians write the numeral itself, eg 17-gon . A variable can even be used, usually n-gon . This is useful if the number of sides is used in a formula. Polygon names Name Sides triangle quadrilateral pentagon hexagon ... nonagon or ennagon decagon hendecagon or undecagon dodecagon hectagon megagon googolgon The taxonomic classification of polygons is illustrated by the following tree:
    • A polygon is simple if it is described by a single, non-intersecting boundary; otherwise it is called

    26. Il Teorema Di Morley
    Translate this page Fu comunque solo nel 1837 che pierre wantzel (1814-1848) riuscì a dimostrare lanecessità della condizione di Gauss sui poligoni regolari e quindi anche l
    http://www.lorenzoroi.net/geometria/Morley.html
    Il teorema di Morley
    Dopo un sintetico inquadramento storico del problema della trisezione di un angolo e una introduzione all'uso di alcuni strumenti della geometria dinamica, si passa a dimostrare un utile lemma sull'incentro e quindi si propone la costruzione che conduce alla dimostrazione del teorema di Morley. Di questo teorema si fornisce infine una seconda prova di carattere algebrico sfruttando i teoremi della trigonometria.
    Breve introduzione storica
    trisecati duplicazione del cubo e la quadratura del cerchio
    poligoni regolari
    . Tale problema fu affrontato con successo da Gauss primi di Fermat ) della forma 2 p + 1, con p m e m = 0, 1, 2... . Ne segue che, per esempio, poligoni regolari di 7 o 9 lati non sono elementarmente costruibili. Fu comunque solo nel 1837 che Pierre Wantzel n n con l'angolo cos 3 x x 3 x ossia x - 3 x - 1 = 0. Ed essendo l'equazione di terzo grado e irriducibile, secondo il criterio di Wantzel Poiché Euclide non considerava oggetti di cui non avesse precedentemente stabilito l'esistenza con una esplicita costruzione (prima di dimostrare il teorema di Pitagora, spiega come costruire un quadrato...), solo con una certa riluttanza i matematici si sono abituati ad accettare nella geometria euclidea l'esistenza di situazioni che essi non fossero in grado di costruire. In particolare, la "storica" difficoltà di trisecare un angolo è probabilmente la ragione del perché il teorema che ci accingiamo a dimostrare non fu scoperto se non nel XX secolo.

    27. Wiskunde
    Verder zijn er stukken gewijd aan Leonhard Euler (17071783), en aan de nagenoegonbekende pierre-Laurent wantzel (1814-1848) die als eerste bewees dat een
    http://www.vssd.nl/hlf/wiskunde.html
    Onderwijsuitgaven van Delft University Press bestelformulier / order form
    Wiskunde: analyse, lineaire algebra en statistiek
    download Acrobat Reader Analyse Numerieke wiskunde Statistiek en kansrekening Lineaire algebra Diversen wiskunde
    Nieuw
    Regelmaat in de ruimte wiskunde
    Analyse
    dr. J.H.J. Almering e.a., geheel herzien door dr.H. Bavinck en dr.ir. R.W. Goldbach 1996 / 592 p. / ISBN 90-407-1260-3 / geb. / Euro 29,95 Aan het eind van de meeste paragrafen is een aantal oefeningen opgenomen om de lezer vertrouwd te maken met de voorafgaande leerstof. Aan het eind van elk hoofdstuk is een paragraaf met vraagstukken toegevoegd, gerangschikt overeenkomstig de behandeling van de leerstof in het betreffende hoofdstuk. Inhoud n naar IR m PDF-bestand van de inhoudsopgave (32 Kb) wiskunde
    Analyse
    250 tentamenopgaven met uitwerkingen
    dr. H. Bavinck

    28. Haitian Math Whiz May Have Unraveled Age
    Over 2000 years later, in 1837, a French mathematician named pierre wantzel proclaimedthat it was impossible to trisect an angle using just a compass and a
    http://www.radiolakay.com/romain.htm
    please download macromedia
    Listen Live : Real Player or Windows Media Player
    Live Chat with Radio Lakay on AIM chat AIM:LAKAYINTER
    Links Global Outlook Library of Congress Bob Corbett's Home Page
    Haitian Math Whiz May Have Unraveled Age-old Geometry Mystery
    HAITI PROGRES ( http://www.haiti-progres.com ), October 9 - 15, 2002
    Vol. 20, No. 30
    by Kim Ives
    PHOTO: Leon Romain has devised a theorem for trisecting any angle, one of geometry's great puzzles. If he is right, it could change your life. So far, nobody has proved him wrong.
    Around 450 B.C., the Greek mathematician, Hippias of Ellis, began searching for a way to trisect an angle. Over 2000 years later, in 1837, a French mathematician named Pierre Wantzel proclaimed that it was impossible to trisect an angle using just a compass and a straightedge, the only tools allowed in geometric construction.
    But now, at the dawn of the twenty-first century, a Haitian computer program designer, Leon Romain, claims he has proven, with a "missing theorem," that it is possible to trisect an angle with those simple tools, disproving Wantzel's assertion and exploding centuries of mathematical gospel.
    "This discovery shows us that the notions that every mathematician has held for the past 200 years as absolute

    29. Ruler-and-compass Constructions - Reference Library
    polygons can be constructed with ruler and compass alone was settled by Carl FriedrichGauss in 1796 and (sufficiency) and pierre wantzel in 1836 (necessity
    http://www.campusprogram.com/reference/en/wikipedia/r/ru/ruler_and_compass_const
    Reference Library: Encyclopedia
    Main Page
    See live article Alphabetical index
    Ruler-and-compass constructions
    A number of ancient problems in geometry involve the construction of lengths or angles using only an idealised ruler and compass . The ruler is indeed a straightedge , and may not be marked; the compass may only be set to already constructed distances, and used to describe circular arcs. Some famous ruler-and-compass problems have been proved impossible, in several cases by the results of Galois theory In spite of these impossibility proofs, some mathematical amateurs persist in trying to solve these problems. Many of them fail to understand that many of these problems are trivially soluble provided that other geometric transformations are allowed: for example, squaring the circle is possible using geometric constructions, but not possible using ruler and compasses alone. Mathematician Underwood Dudley has made a sideline of collecting false ruler-and-compass proofs, as well as other work by mathematical cranks , and has collected them into several books.

    30. Trisection De L'angle
    en 1837 par pierre Laurent wantzel (1814-1848). Règle et compas.
    http://membres.lycos.fr/villemingerard/Histoire/Trisangl.htm
    NOMBRES - Curiosités, théorie et usages Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: Rubrique: HISTOIRE ANTIQUITÉ Introduction Duplication du cube Trisection de l'angle Quadrature du cercle ... Heptagone Sommaire de cette page ÉQUATION pour la trisection CONSTRUCTION à l'équerre Pages voisines Règle et compas Transcendant Histoire Hilbert ... Bissection Trisection Découper un angle quelconque en deux parts égales Découper un angle quelconque en trois parts égales Bissection
    • Découper un angle quelconque en deux parts égales est facile Pourquoi est-ce si difficile pour trois?
    ÉQUATION POUR trois Idée de la démonstration avec un angle de 20° Calculons en général cos(3a) = cos(a)cos(2a) - sin(a)sin(2a) = cos(a)(cos (a) - sin (a)) - 2sin (a)cos(a) = cos(a)(2cos (a) - 1) - 2(1 - cos (a))cos(a) (a) - 3cos(a) Prenons le cas particulier de a o cos(3a) = cos(60 o L'équation, dans ce cas, devient (a) - 3cos(a) (a) - 6cos(a) - 1 En remplaçant cos(a) = x Avec v = 2x = v Voir Équation Solutions rationnelles ? Supposons que Oui, alors v = p/q fraction minimale (simplifiée) En remplaçant dans l'équation = (p/q) - 3(p/q) - 1 En multipliant par q = p - q En reformulant q = p = p (p² - 3q²) On déduit que p est divisible par q Conséquence p est divisible par q Impossible p/q est une fraction irréductible par hypothèse Et en factorisant avec p p + q = q (3p + q²) On déduit que q est divisible par p Conséquence q est divisible par p Impossible p/q est une fraction irréductible par hypothèse La supposition est fausse v n'est par rationnel

    31. Constructions Géométriques - Constructible
    Translate this page o ceux pour p = 2 0 , 2 1 , 2 2 , 2 3 , 2 4. pierre Laurent wantzel (1814- 1848). Il démontre que seuls ces polygones sont constructibles.
    http://membres.lycos.fr/villemingerard/Geometri/Construc.htm
    Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: Rubrique: CONSTRUCTIONS Constructible Bissection Sommaire de cette page CONSTRUCTIBLE: Théorème de Gauss CONSTRUCTION DES POLYGONES TYPES DE CONSTRUCTIONS Pages voisines Allumettes Centre du cercle Cycloïde Géométrie ... Triangles CONSTRUCTIBILITÉ Peut-on construire rigoureusement une figure géométrique en utilisant des outils précis: règle, compas, marque sur la règle … Division de la circonférence pas possible pour CONSTRUCTIBLE: Théorème de Gauss Historique Les Grecs connaissaient de nombreuses possibilités de construction Il a fallu 2000 ans pour que Gauss (1796) démontre le théorème suivant Théorème de Gauss (formulation n°1) Il est possible de diviser la circonférence en un nombre impair de parties égales si, et seulement si, le nombre est un nombre premier de Fermat Théorème de Gauss (formulation n°2) Le polygone n'est constructible avec une règle et un compas que si : m étant entier et n premier Ou si n est formé exclusivement de combinaisons d'un nombre premier de Fermat (comme 3, 5, 17, 257, 65 537) et de puissances de deux.

    32. Vinkelns Tredelning Och Andra Geometriska Konstruktionsproblem
    misstänka att problemen kanske inte kan lösas med de klassiska hjälpmedlen, mendet dröjde ända till 1837 innan fransmannen pierre wantzel bevisade att
    http://www.matematik.su.se/matematik/exempel/geometri/Arkimedes.html
    Vinkelns tredelning och andra geometriska konstruktionsproblem
    och cirkelns kvadratur. lika delar, konstruerar en kvadrat deliska problemet Arkimedes tredelning av en vinkel. En vinkel v (dvs AOB O . En linje genom B C och OA D CD DCO likbent (eftersom CD och CO x y DOC och DOB ger y=2x och v=x+y=3x C och D C och D B D OA (och C mellan B och D C Pierre Wantzel Ferdinand von Lindemann inte Euklides AB A och B och samma radie AB . Om C ABC AB Carl Friedrich Gauss fann 1796 en konstruktion av den regelbundna n k p ...p r, p i m m samt Arkimedes och

    33. Chronological Indexes (”N‘㏇)
    Joseph Liouville 18091882) ? (Evariste Galois 1811-1832) ? (pierre Laurent wantzel 1814-1848) ? (James Joseph
    http://www5f.biglobe.ne.jp/~mathlife/html/mathematicians.htm
    RETURN Chronological indexes BC
    ƒ^ƒŒ[ƒX
    @(Thales@BC624?-547?)
    ƒsƒ^ƒSƒ‰ƒX
    @(Pythagoras@BC569?-475?)
    ƒ[ƒmƒ“
    @(Zeno of Elea@BC490?-425?)
    ƒvƒ‰ƒgƒ“
    @(Platon@BC428?-347?)
    ƒqƒpƒeƒBƒA
    i—«j@(Hypatia of Alexandria@BC370?-415?)
    ƒ†[ƒNƒŠƒbƒh
    iƒGƒEƒNƒŒƒCƒfƒXj@(Euclid@BC330?-275?)(Eukleides)
    ƒjƒRƒƒfƒX
    @(Nicomedes@BC300?-240?)
    ƒAƒ‹ƒLƒƒfƒX
    @(Arkhimedes@BC287?-212)
    @(Apollonios@BC262?-200?)
    ƒfƒBƒIƒtƒ@ƒ“ƒgƒX
    @(Diophantos@246?-330?) @(Pappus of Alexandria@290?-350?) ƒoƒXƒJƒ‰ @(Bhaskara@1114-1185) @(Leonardo Fibonacci@1170?-1250?) ƒAƒ‹EƒJ[ƒV[ @(Ghiyath al-Din Jamshid Mas'ud al-Kashi@1380?-1429) ƒfƒ‹EƒtƒFƒbƒ @(Scipione del Ferro@1465-1526) ƒ^ƒ‹ƒ^[ƒŠƒA @(Niccolo Fontana Tartaglia@1499-1557)(Nicolo Fontana) ƒJƒ‹ƒ_[ƒm @(Girolamo Cardano@1501-1576) ƒtƒFƒ‰[ƒŠ @(Lodovico Ferrari@1522-1565) ƒ”ƒBƒGƒg @(Francois Viete@1540-1603) ƒXƒeƒrƒ“ @(Simon Stevin@1548-1620) ƒl[ƒsƒA @(John Napier@1550-1617) ƒPƒvƒ‰[ @(Johannes Kepler@1571-1630) @(Thomas Hobbes@1588-1679) ƒWƒ‰[ƒ‹EƒfƒUƒ‹ƒO @(Girard Desargues@1591-1661) ƒfƒJƒ‹ƒg @(Rene Descartes@1596-1650) ‹g“cŒõ—R @(Yoshida Mitsuyoshi@1598-1672) @(Pierre de Fermat@1601-1665) ƒEƒHƒŠƒX @(John Wallis@1616-1703) ƒpƒXƒJƒ‹ @(Blaise Pascal@1623-1662) ƒAƒCƒUƒbƒNEƒoƒ[ @(Isaac Barrow@1630-1677) ŠÖF˜a @(Seki Takakazu@1642?-1708)

    34. Japanese Syllabaries (ŒÜ\‰¹‡)
    ? (Karl Theodor Wihelm Weierstrass 18151897) (Andrew Wiles 1953-) ? (pierre Laurent wantzel 1814-1848)
    http://www5f.biglobe.ne.jp/~mathlife/html/jpsyllabary.htm
    RETURN Japanese syllabaries ƒA
    ƒA[ƒxƒ‹
    @(Niels Henrik Abel@1802-1829)
    ƒAƒCƒUƒbƒNEƒoƒ[
    @(Isaac Barrow@1630-1677)
    ƒAƒCƒ[ƒ“ƒVƒ…ƒ^ƒCƒ“
    @(Ferdinand Gotthold Max Eisenstein@1823-1852)
    ƒAƒCƒ“ƒVƒ…ƒ^ƒCƒ“
    @(Albert Einstein@1879-1955)
    @(Apollonios@BC262?-200?)
    ƒAƒ‹EƒJ[ƒV[
    @(Ghiyath al-Din Jamshid Mas'ud al-Kashi@1380?-1429)
    ƒAƒ‹ƒKƒ“
    @(Jean Robert Argand@1768-1822)
    ƒAƒ‹ƒLƒƒfƒX
    @(Arkhimedes@BC287?-212)
    ƒAƒ“ƒhƒŒEƒ”ƒFƒCƒ†
    @(Andre Weil@1906-1998)
    ƒC ƒE ƒEƒBƒi[ @(Norbert Wiener@1894-1964) ƒEƒFƒAƒŠƒ“ƒO @(Edward Waring@1736-1798) ƒEƒHƒŠƒX @(John Wallis@1616-1703) ƒG ƒGƒ‹ƒ~[ƒg @(Charles Hermite@1822-1901) ƒI ƒIƒCƒ‰[ @(Leonhard Euler@1707`1783) ƒJ ƒKƒEƒX @(Johann Karl Friedrich Gauss@1777-1855) ƒJƒ‹ƒ_[ƒm @(Girolamo Cardano@1501-1576) ƒKƒƒ @(Evariste Galois@1811-1832) ƒJƒ“ƒg[ƒ‹ @(Georg Ferdinand Ludwig Philipp Cantor@1845-1918) ƒL ƒN ƒNƒ‰ƒCƒ“ @(Felix Christian Klein@1849-1925) ƒNƒƒlƒbƒJ[ @(Leopold Kronecker@1823-1891) ƒP ƒPƒCƒŠ[ @(Arthur Cayley@1821-1895) ƒQ[ƒfƒ‹ @(Kurt Godel@1906-1978) ƒPƒvƒ‰[ @(Johannes Kepler@1571-1630) ƒR ƒR[ƒVƒG @(Augustin Louis Cauchy@1789-1857) ƒT ƒV ƒWƒ‡ƒ‹ƒ_ƒ“ @(Marie Ennemond Camille Jordan@1838-1922) ƒWƒ‰[ƒ‹EƒfƒUƒ‹ƒO @(Girard Desargues@1591-1661) ƒVƒ‹ƒ”ƒFƒXƒ^[ @(James Joseph Sylvester@1814-1897) ƒX ƒXƒeƒrƒ“ @(Simon Stevin@1548-1620) ƒZ ŠÖF˜a @(Seki Takakazu@1642?-1708)

    35. Links: Henry Darcy And His Law
    pierre Laurent wantzel (18141848). Engineering History Sites Linksto other interesting sites. Send me your site if you have history
    http://biosystems.okstate.edu/darcy/Links.htm
    Henry Darcy and His Law Links Henry Darcy Main
    Darcy
    Not much is on the web about Darcy. Here are a few sites of note. Darcy's Law Engineering History Sites Links to other interesting sites.

    36. Johns Hopkins Magazine February 1999
    after generations of mathematicians had attempted in vain to solve it, that a Frenchbridge and highway engineer named pierre Louis wantzel finally cracked the
    http://www.jhu.edu/~jhumag/0299web/degree.html
    FEBRUARY 1999
    CONTENTS
    What is the most difficult instrument to master? Cosmological conundrum to crack? We asked a half dozen Johns Hopkins experts to share the biggest challenge of their discipline. S P E C I A L S E C T I O N Degrees of Difficulty
    Illustration by Wally Neibart
    What is the most difficult language to learn?
    What is the most difficult math problem to solve? What is the most difficult cosmological conundrum to crack? ... What is the most difficult procedure to perform? What is the most difficult language to learn?
    Richard Brecht
    Deputy Director, National Foreign Language Center
    Japanese is without question the most daunting language for a native English speaker to tackle, according to Brecht. "I would like to learn Japanese but I don't have enough time in my lifetime. That's very depressing," says the linguist, whose center is based at Hopkins's Nitze School of Advanced International Studies (SAIS) . He notes that the State Department allows its students three times as long to learn Japanese as it does languages like Spanish or French. As Brecht explains it, the challenge with Japanese is threefold. First, there's the fact that the Japanese written code is different from the spoken code. "Therefore, you can't learn to speak the language by learning to read it," and vice versa. What's more, there are three different writing systems to master. The kanji system uses characters borrowed from Chinese. Users need to learn 10,000 to 15,000 of these characters through rote memorization; there are no mnemonic devices to help. Written Japanese also makes use of two syllabary systems: kata-kana for loan words and emphasis, and hira-gana for spelling suffixes and grammatical particles.

    37. Full Alphabetical Index
    Translate this page van der (552*) Wald, Abraham (144*) Wallace, William (261*) Wallis, John (784*)Wang, Hsien Chung (649) Wangerin, Albert (46*) wantzel, pierre (1020) Waring
    http://www.geocities.com/Heartland/Plains/4142/matematici.html

    38. The Hundred Greatest Theorems
    Karl Frederich Gauss. 1801. 8. The Impossibility of Trisecting the Angle and Doublingthe Cube. pierre wantzel. 1837. 9. The Area of a Circle. Archimedes. 225 BC. 10.
    http://personal.stevens.edu/~nkahl/Top100Theorems.html
    The Hundred Greatest Theorems
    The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result." The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals. The Irrationality of the Square Root of 2 Pythagoras and his school 500 B.C. Fundamental Theorem of Algebra Karl Frederich Gauss The Denumerability of the Rational Numbers Georg Cantor ... Pythagoras and his school 500 B.C.

    39. Le Nombre Pi - Mathématique - A525G
    pierre wantzel en 1837.
    http://www.a525g.com/mathematiques/nombre-pi.htm
    Retour à la catégorie - Mathématiques Accueil A525G Commentaires
    Le fascinant nombre Pi
    Histoire - Première définition
    Pi est défini comme étant le rapport constant entre la circonférence et le diamètre d'un cercle. Remarque : Il a déjà fallu un certain temps à l'homme pour trouver que ce rapport est constant..., et donc pour découvrir l'existence de PI. A l'origine, ce rapport est noté P. C'est Euler qui utilisa la notation de la seizième lettre de l'alphabet grec, notation gardée par la suite vue l'importance de ses travaux. Ainsi, pour tout cercle de périmètre p, de diamètre D (de rayon R),
    def : p = Pi * D = 2 * Pi * R
    Le nombre Pi, un nombre "naturel" ?
    Connaître l'existence d'une constante est fort intéressant, mais connaître sa valeur l'est beaucoup plus... Elle l'est d'autant plus que Pi apparait dans de très nombreux problèmes physiques et mathématiques : Calcul de surface et de volume impliquant des cercles ou des ellipses. Par exemple, on trouve, par intégration, des formules classiques telles que :
    • volume d'une boule de rayon R = 4/3 Pi R3 surface d'une sphère de rayon R = 4 Pi R² Aire d'une ellipse de demi grand axe a et de demi petit axe b = Pi a b Périmètre d'une ellipse =
    En astronomie , Pi est important puisque les étoiles et les planètes ont plus ou moins une forme de boule et décrivent plus ou moins des trajectoires elliptiques les unes par rapport aux autes.

    40. Four Problems Of Antiquity
    The problem had been settled in 1837 by pierre Laurant wantzel (18141848) whohad proven that there was no way to trisect a 60 o angle in the classical
    http://hem.passagen.se/ceem/fourprob.htm
    Four problems of antiquity Three geometric questions raised by the early Greek mathematicians attained the status of classical problems in Mathematics. These are:
  • Doubling of the cube Construct a cube whose volume is double that of a given one. Angle trisection Trisect an arbitrary angle. Squaring a circle Construct a square whose area equals that of a given circle.
    (Often another problem is attached to the list: ) Construct a regular heptagon (a polygon with 7 sides.)
  • The problems are legendary not because they did not have solutions, or the solutions they had were unusually hard. No - numerous simple solutions have been found yet by Greek mathematicians. The problem was in that all known solutions violated by an important condition for this kind of problems, one condition imposed by the Greek mathematicians themselves: Valid solutions to the construction problems are assumed to consist of a finite number of steps of only two kinds: drawing a straight line with a ruler (or rather a straightedge as no marks are allowed on the ruler) and drawing a circle. You are referred to solutions of problems 2 and 3 as examples of existent solutions. That no solution exists subject to the self-imposed constraints have been proven only in the 19th century.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter