Home - Scientists - Wantzel Pierre |
Page 2 21-40 of 85 Back | 1 | 2 | 3 | 4 | 5 | Next 20 |
Wantzel Pierre: more detail |
21. References For Wantzel References for pierre Laurent wantzel. Articles F Cajori, pierreLaurent wantzel, Bull. Amer. Math. Soc. 24 (1) (1917), 339347. http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZ5844.htm | |
|
22. Full Alphabetical Index Translate this page John (553*) Wall, C Terence (545*) Wallace, William (261*) Wallis, John (784*)Wang, Hsien Chung (649) Wangerin, Albert (46*) wantzel, pierre (1020) Waring http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Flllph.htm | |
|
23. Four Problems Of Antiquity The problem had been settled in 1837 by pierre Laurent wantzel (18141848) whohad proven that there was no way to trisect a 60 o angle in the classical http://www.cut-the-knot.org/arithmetic/antiquity.shtml | |
|
24. Fermat Number regular ngon is constructible. The necessity of this condition wasnot proved until 1836 by pierre wantzel. A positive integer n is http://www.fact-index.com/f/fe/fermat_number.html | |
|
25. Polygon regular polygons can be constructed with ruler and compass alone was settled by CarlFriedrich Gauss in 1796 (sufficiency)and pierre wantzel in 1836 (necessity http://www.fact-index.com/p/po/polygon.html | |
|
26. Il Teorema Di Morley Translate this page Fu comunque solo nel 1837 che pierre wantzel (1814-1848) riuscì a dimostrare lanecessità della condizione di Gauss sui poligoni regolari e quindi anche l http://www.lorenzoroi.net/geometria/Morley.html | |
|
27. Wiskunde Verder zijn er stukken gewijd aan Leonhard Euler (17071783), en aan de nagenoegonbekende pierre-Laurent wantzel (1814-1848) die als eerste bewees dat een http://www.vssd.nl/hlf/wiskunde.html | |
|
28. Haitian Math Whiz May Have Unraveled Age Over 2000 years later, in 1837, a French mathematician named pierre wantzel proclaimedthat it was impossible to trisect an angle using just a compass and a http://www.radiolakay.com/romain.htm | |
|
29. Ruler-and-compass Constructions - Reference Library polygons can be constructed with ruler and compass alone was settled by Carl FriedrichGauss in 1796 and (sufficiency) and pierre wantzel in 1836 (necessity http://www.campusprogram.com/reference/en/wikipedia/r/ru/ruler_and_compass_const | |
|
30. Trisection De L'angle en 1837 par pierre Laurent wantzel (1814-1848). Règle et compas. http://membres.lycos.fr/villemingerard/Histoire/Trisangl.htm | |
|
31. Constructions Géométriques - Constructible Translate this page o ceux pour p = 2 0 , 2 1 , 2 2 , 2 3 , 2 4. pierre Laurent wantzel (1814- 1848). Il démontre que seuls ces polygones sont constructibles. http://membres.lycos.fr/villemingerard/Geometri/Construc.htm | |
|
32. Vinkelns Tredelning Och Andra Geometriska Konstruktionsproblem misstänka att problemen kanske inte kan lösas med de klassiska hjälpmedlen, mendet dröjde ända till 1837 innan fransmannen pierre wantzel bevisade att http://www.matematik.su.se/matematik/exempel/geometri/Arkimedes.html | |
|
33. Chronological Indexes (Nã) Joseph Liouville 18091882) ? (Evariste Galois 1811-1832) ? (pierre Laurent wantzel 1814-1848) ? (James Joseph http://www5f.biglobe.ne.jp/~mathlife/html/mathematicians.htm | |
|
34. Japanese Syllabaries (Ü\¹) ? (Karl Theodor Wihelm Weierstrass 18151897) (Andrew Wiles 1953-) ? (pierre Laurent wantzel 1814-1848) http://www5f.biglobe.ne.jp/~mathlife/html/jpsyllabary.htm | |
|
35. Links: Henry Darcy And His Law pierre Laurent wantzel (18141848). Engineering History Sites Linksto other interesting sites. Send me your site if you have history http://biosystems.okstate.edu/darcy/Links.htm | |
|
36. Johns Hopkins Magazine February 1999 after generations of mathematicians had attempted in vain to solve it, that a Frenchbridge and highway engineer named pierre Louis wantzel finally cracked the http://www.jhu.edu/~jhumag/0299web/degree.html | |
|
37. Full Alphabetical Index Translate this page van der (552*) Wald, Abraham (144*) Wallace, William (261*) Wallis, John (784*)Wang, Hsien Chung (649) Wangerin, Albert (46*) wantzel, pierre (1020) Waring http://www.geocities.com/Heartland/Plains/4142/matematici.html |
38. The Hundred Greatest Theorems Karl Frederich Gauss. 1801. 8. The Impossibility of Trisecting the Angle and Doublingthe Cube. pierre wantzel. 1837. 9. The Area of a Circle. Archimedes. 225 BC. 10. http://personal.stevens.edu/~nkahl/Top100Theorems.html | |
|
39. Le Nombre Pi - Mathématique - A525G pierre wantzel en 1837. http://www.a525g.com/mathematiques/nombre-pi.htm | |
|
40. Four Problems Of Antiquity The problem had been settled in 1837 by pierre Laurant wantzel (18141848) whohad proven that there was no way to trisect a 60 o angle in the classical http://hem.passagen.se/ceem/fourprob.htm | |
|
Page 2 21-40 of 85 Back | 1 | 2 | 3 | 4 | 5 | Next 20 |