Geometry.Net - the online learning center
Home  - Scientists - Viete Francois
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Viete Francois:     more books (25)
  1. The Analytic Art (Dover Books on Mathematics) by Francois Viete, 2006-10-06
  2. La nouvelle algebre de M. Viete: Precedee de Introduction en l'art analytique (Corpus des euvres de philosophie en langue francaise) (French Edition) by Francois Viete, 1986
  3. Mémoires De La Vie De Jean De Parthenay-Larchevêque, Sieur De Soubise [By F. Viète?]. Accompagnés De Lettres Relatives Aux Guerres D'italie Sous Henri ... & Des Notes Par J. Bonnet (French Edition) by François Viète, Jean De Parthenay-Larchevêque, 2010-03-22
  4. Mémoires De La Vie De Jean Parthenay-Larchevêque: Sieur De Soubise, Accompagnés Le Lettres Relatives Aux Guerres D'italie Sous Henri II Et Au Siége De Lyon (1562-1653) (French Edition) by François Viète, 2010-02-12
  5. Euvres mathematiques (French Edition) by Francois Viete, 1991
  6. Élèves et Secrétaires de François Viète: Jean de Beaugrand, Marin Ghetaldi, Nathanael Tarporley, Alexander Anderson, Pierre Daniel (French Edition)
  7. Protecteurs de François Viète: Catherine de Parthenay, Jean V de Parthenay, Françoise de Rohan, René Ii de Rohan, Antoinette D'aubeterre (French Edition)
  8. Personnalité Du Bas-Poitou: François Viète, Anne Louis Henri de La Fare, François L'olonnais, Nicolas Rapin, Régnault Girard (French Edition)
  9. Les Lieux de François Viète: Fontenay-Le-Comte, Mouchamps, Beauvoir-Sur-Mer, Château de Blain, Foussais-Payré, Rue Viète, le Busseau (French Edition)
  10. Formules et Théorèmes de François Viète: Trigonométrie Sphérique, Problème Des Contacts, Théorème de Descartes, Cercle D'apollonius (French Edition)
  11. Algèbre Nouvelle et François Viète: François Viète, Algèbre Nouvelle, Chronologie de La Vie de François Viète, Albert Girard, Denis Henrion (French Edition)
  12. Biographes de François Viète, Spécialistes de L'algèbre Nouvelle: Joseph Fourier, Benjamin Fillon, Félix-Sébastien Feuillet de Conches (French Edition)
  13. Rechtsanwalt (Frankreich): Jacques Pierre Brissot, Carlo Buonaparte, Robert Badinter, François Viète, Gilles Perrault, Hans Adam Dorten (German Edition)
  14. Avocat Du Xvie Siècle: François Viète, François D'amboise, François Raguel, Julien Peleus, Jean Chenu (French Edition)

61. MATHEMATIK
anciens. Archives de philosophie. 1937; 13 221/245. 13.viete, francois.The Analytic Art. In Witmer, T. Richard, Transl. Ohio; 1983.
http://heihobel.phl.univie.ac.at/per/rh/ellvau/kaweb/l3txt.htm
MATHEMATIK Allgemein 1.Arndt, Hans Werner. Methodo scientifica pertractatum. Berlin, New York: de Gruyter; 1971. 2.Blake, R. M.; Ducasse, C. J., and Madden E.H. Theories of Scientific method: The Renaissance through the Nineteenth Century. Seattle; 1960. 3.Chihara, Ch. S. Constructibility and Mathematical Existence. Oxford; 1990. 4.Clarke, Desmond M. Descartes ' Philosophy of Science. Manchester; 1982. 5.Crapulli, Giovanni. Mathesis Universalis. Genesi di una idea nel XVI secolo. Roma; 1969. 6.Gilbert, Neal W. Renaissance Concepts of Method. New York; 1960. 7.Hintikka, Jaakko and Remes, Unto. The Method of Analysis. Its Geometrical Origin and Its General Significance. Dordrecht, Boston; 1974. 8.Klein, Jacob. Greek Mathematical Thought and the Origin of Algebra. Cambr.Mass; 1968. 9.Lachterman, David Rapport. The Ethics of Geometry. A Genealogy of Modernity. London; 1989. 10.Mueller, Ian. Aristotle on Geometrical Objects. In: Barnes, J.; Schofield, M., and Sorabji, R., Eds. Articles on Aristotle III. London; 1970; pp. 96-107. 11.-. Euclid's Elements and the Axiomatic Method. The British Journal for the Philosophy of Science. 1969; XX(4):289-309.

62. Mathematician List
Somerville, Mary, Stevin, Simon, Tartaglia, Nicolo, Thales, Uhlenbeck, Karen,viete, francois, Wallis, John, Wheeler, Anna J. Pell, Young, Grace Chisholm,
http://www.manassas.k12.va.us/round/ClassWeb/Volz/mathematicianlist.htm

63. Stefan's Florilegium
francois viete) Date Fri, 17 Mar 1995 110714 0500 OrganizationBell-Northern Research. jeffs@math.bu.EDU (Jeff Suzuki) wrote
http://www.florilegium.org/files/UNCAT/cryptography-msg.html
Stefan's Florilegium
cryptography-msg
This document is also available in: text or RTF formats.
cryptography-msg - 12/20/99 Codes and codebreaking in period. NOTE: See also the files: languages-msg, Latin-msg, alchemy-msg,
Latin-online-art.
NOTICE - This file is a collection of various messages having a common theme that
I have collected from my reading of the various computer networks. Some
messages date back to 1989, some may be as recent as yesterday. This file is part of a collection of files called Stefan¹s Florilegium.
These files are available on the Internet at: http://www.florilegium.org I have done a limited amount of editing. Messages having to do with
seperate topics were sometimes split into different files and sometimes
extraneous information was removed. For instance, the message IDs were
removed to save space and remove clutter. The comments made in these messages are not necessarily my viewpoints. I
make no claims as to the accuracy of the information given by the individual authors. Please respect the time and efforts of those who have written these time. If information is published from these messages, please give

64. VIERZON
VIETA (or viete), francois, SEIGNEUR DE LA BIGOTIERE (15401603), more generallyknown as FRANCISCUS VIETA, French mathematician, was born in 1540 at Fontenay
http://26.1911encyclopedia.org/V/VI/VIERZON.htm
VIERZON
VIERZON , a town of central France, in the department of Cher, 20 m. N.W. of Bourges by rail. The Cher and the Yevre unite at the foot of the hill on which lie Vierzon-Ville (pop. (1906) town, 11,812) and Vierzon-Village (pop. town, 2026; commune, 9710); Vierzon-Bourgneuf (pop. town, 1482) is on the left bank of the Cher. The town has a port on the canal of Berry and is an important junction on the Orleans railway; there are several large manufactories for the production of agricultural machines, also foundries, porcelain, brick and tile works and glass works. A technical- school of mechanics and a branch of the Bank of France are among the institutions of the town. 1 Bolletino Boncompagni (Rome, 1868), vol. I. p. 227, n. i. VIERSEN VIETA (OR VIETE). FRANCOIS

65. The Scientific Revolution (1550-1700)
16. Which of the following introduced the decimal system of representing fractions?(A), francois viete. (B), Simon Stevin. (A), francois viete. (B), Simon Stevin.
http://www.sparknotes.com/history/european/scientificrevolution/test.html
Advanced Search FAQ Home Free Study Aids ... The Scientific Revolution (1550-1700) Review Test
- Navigate Here - Summary Context Terms, People, Events Timeline Revival of the Study of Nature (16th Century) The New Astronomy Descartes and Bacon Advances in Math Physics (1590-1666) Biology (1600-1680) The Re-Formation of the Heavens Newton and Expanded Understanding (1687) The Royal Society Superstition Study Questions Review Test Further Reading
Review Test
Which of the following was not a reason for the revival of botany? (A) Artists sought to better understand their subjects (B) Scientists sought to find the poison which caused the Plague (C) Medicine was centered on herbal drugs (D) New specimens for study arrived from the New World
Where did botany first develop during the sixteenth century? (A) England (B) Italy (C) Germany (D) Belgium
Which of the following was a major flaw in Otto Brunfels' botanical writing? (A) He tried to compare the structures of plants to the structures of animals (B) He tried to compare his findings to the findings of the ancient Greeks and Romans (C) He tried to compare the fluids in plants to the four humors of the human body (D) All of the above
Which of the following ancient Greeks set forth the concepts of human biology which dominated the Middle Ages?

66. Using Projects In The Mathematics Classroom To Enhance Instruction And Incorpora
Charlotte Angas Somerville, Mary Fairfax Steven, Simon Tartaglia, Niccolo TausskyTodd,Olga Thales Uhlenbeck, Karen Keskulla viete, francois Vinci, Leonardo
http://jwilson.coe.uga.edu/EMT668/EMT668.Folders.F97/Anderson/nctm 99 San Franci
Using Projects in the Mathematics Classroom to Enhance Instruction and Incorporate History of Mathematics Paper Presented at the NCTM 77th Annual Meeting San Francisco, California April 22, 1999 Dawn Leigh Anderson University of Georgia Students should have numerous and varied experiences related to the cultural, historical, and scientific evolution of mathematics so that they can appreciate the role of mathematics in the development of our contemporary society and explore relationships among mathematics and the disciplines it serves: the physical and the life sciences, the social sciences, and the humanities ( Standards , 1989, p. 5).
Learning to communicate mathematically
Integrating projects into the mathematics curriculum gives students opportunities to read, write, and discuss ideas. The very act of communicating mathematics forces students to engage in "doing" mathematics. Guidelines for Developing a Mathematics Project WHO
STUDENT, TEACHER, PARENT
Role of the STUDENT
Select a topic of interest
Research the topic in depth
Prepare and organize the written report and project
Demonstrate the project (orally)
SHOW NOT TELL Role of the TEACHER
Provide enthusiasm so students will want to do the project
Have available selection of ideas, suggestions, and references

67. [2.0] Refining The Art
The French codebreaking tradition began with Philibert Babou, who wasfollowed by francois viete. viete was so successful in cracking
http://www.vectorsite.net/ttcode2.html
Click on this banner to see the site home page. Index Home SiteMap Updates ... Email Comments
[2.0] Refining The Art
v2.2.0 / chapter 2 of 12 / 01 jun 04 / greg goebel / public domain * The invention of frequency analysis made simple monoalphabetic substitution ciphers much too easy to crack, and led cryptographers to design new and more formidable codes and ciphers over the next centuries. The contest between codemaker and codebreaker escalated to a higher level. In the meantime, the general public began to recognize the use of codes and ciphers, and simple cryptosystems came into popular use. [2.1] CRYPTANALYSIS ARISES IN THE WEST
[2.2] POLYALPHABETIC SUBSTITUTION CIPHERS / THE VIGENERE CIPHER

[2.3] OTHER CIPHER REFINEMENTS

[2.4] CIPHERS GO PUBLIC
[2.1] CRYPTANALYSIS ARISES IN THE WEST
* The Arab world was well ahead of the West in cryptanalysis, but in European monasteries monks engaged in analysis of Biblical texts kept interest in cryptology alive. Their interest was provoked partly by the fact that the original Hebrew sources of the Old Testament actually include enciphered words, though more as a literary gimmick than to keep secrets. These enciphered words use a simple monoalphabetic substitution cipher known as "atbash", which involves a straightforward reversal of letters in the alphabet. For example, in English, atbash would involve exchanging "A" and "Z", then "B" and "Y", then "C" and "X", and so on. For a specific example, the Book of Jeremiah refers to the kingdom of "Sheshach", which in Hebrew script is the atbash cipertext for "Babel".

68. List Of Mathematical Topics (V-Z)
Vertex Vertical translation A very elementary proof that 22/7 exceeds p Vidav Vidav, Ivan Vierbein viete, francois Vietoris, Leopold
http://www.wikisearch.net/en/wikipedia/l/li/list_of_mathematical_topics__v_z_.ht
Main Page Also see:
List of mathematical topics (V-Z)
See the list of mathematical topics for the purpose and extent of this list. A-C D-F G-I J-L ... S-U - V-Z
V
Vallée-Poussin, Charles de la Valuation (mathematics) Value distribution theory of holomorphic functions van der Waerden, Bartel Leendert Van der Waerden's theorem ... Variance Variational inequality Vector (spatial) Vector bundle Vector calculus Vector field ... Vierbein Viete, Francois Vietoris, Leopold Vigenère Cipher Vigesimal Virasoro algebra ... Voxel
W
Wall-Sun-Sun prime Wallpaper group Wallis, John Walsh function ... Wang tile Wantsel, Pierre Waring, Edward Waring's problem Wave Wave equation ... Whiston, William Wieferich, Arthur Wieferich prime Wieferich's criterion Wiener, Norbert Wiener equation ... Wren, Christopher Wrench, John Wye-delta transform
X
Xiaolin Wu's line algorithm Xor swap algorithm
Y
Y combinator Yarrow algorithm Yau, Shing-Tung Y-delta transform Yoccoz, Jean-Christophe Yoneda lemma
Z
Z-transform Zabusky Zabusky, Norman

69. Matematikusok Arcképcsarnoka
Viéte, francois (15401603. 02. 23.). Másodfokú egyenletek gyökök és együtthatókkapcsolatát megadó képletek, a viete-formulák is orzik a nevét.
http://www.sulinet.hu/ematek/html/viete.html
Viéte, Francois
Francia matematikus.
Foglalkozását tekintve jogász volt. Fiatal korában támadt egy ötlete új csillagászati elmélethez, amely a kopernikuszi rendszert fejlesztette volna tovább. Ennek érdekében kezdett el a matematikával foglalkozni. Tehetséges emberként kezdetben jogászként is sikeres pályája volt. III. Henrik, majd IV Henrik francia király ügyésze és tanácsosa volt. Késõbb kegyvesztett lett.
Munkásságáról:
Kezdetben elsõsorban trigonometriával foglalkozott. 1584 és 1589 között, kegyvesztettsége idején írta meg fõ mûvét az In artem analyticam isagoge -t. (Bevezetés az analízis tudományába). Ez befejezetlensége ellenére is egy hatalmas munka, benne új algebrai megoldásokkal. Az egyenletmegoldás általános módszereit kereste. Ezért a Diophantosz által megkezdett úton az algebrai jelölésrendszert fejlesztette tovább.
Igyekezett szimbólumokkal dolgozni, az együtthatók helyett is betûket használt. Ezek segítségével formulát tudott felírni a másodfokú egyenletek megoldására . A harmadfokú egyenletek megoldásával is foglalkozott. Igen jelentõs eredménye a végtelen sorozatok felfedezése. Egy ilyen sorozat segítségével határozata meg a p értékét 10 tizedes pontosságig.

70. ORIENTALIA InfoBase | World History
Viet+Cong. Viet+Minh. Viet+Nam+Duy+Tan+Hoi. Viet+Nam+Quang+Phuc+Hoi. Viet+Nam+Quoc+Dan+Dang.viete+francois. Vietnam. Vietnam+War. Vietnamese+National+Liberation+Front.
http://www.orientalia.org/infobase2-V.html
This is an academic Eastern Philosophy and Religion site! Please, register to access all sections.
Navigator
  • Home
  • Account
  • New Password
  • Site Map ...
  • Feedback
    User Info Welcome, Guest Nickname
    Password
    Security Code: Type S-Code:
    Register
    Membership:
    Latest: jrd
    New Today:
    New Yesterday:
    Overall:
    People Online: Visitors: Members: Total: Forums Last 20 Forum Messages Have you heard of the name David Ecke? ..... Last post by Guest in Feadback and Support on May 30, 2004 at 07:55:15 two words in sanskrit Last post by Guest in Teach Me on May 27, 2004 at 15:10:14 Continental Philosophy Last post by Guest in Comparative Philosophy on May 25, 2004 at 20:48:46 Corrupt Zip Files Last post by Plamen in Googlifier on May 13, 2004 at 18:26:18 The Dao of the Press Last post by Plamen in Technology of Wisdom on May 04, 2004 at 04:28:51 Cakra- Mooney Last post by Guest in Round Table on Apr 29, 2004 at 17:15:27 Save the Earth! Last post by Guest in Buddhist Studies on Apr 27, 2004 at 09:20:50 SVARA Last post by Plamen in Teach Me on Apr 20, 2004 at 17:28:39 Here and Now Last post by Plamen in Buddhist Studies on Apr 20, 2004 at 14:37:00
  • 71. [FOM] Interesting Book
    Tartaglia (Fontana) 32 Taylor, Brook 16 Tchebycheff, Pafnuty 4 ValleePoussin, Charlesde la 6 Vandermonde, Alexandre 1 Venn, John 1 viete, francois 36 Volterra
    http://www.cs.nyu.edu/pipermail/fom/2003-December/007780.html
    [FOM] Interesting book
    Harvey Friedman friedman at math.ohio-state.edu
    Tue Dec 30 10:46:18 EST 2003 More information about the FOM mailing list

    72. Food For Thought: Biographies
    Vierkandt, Alfred Ferdinand (German sociologist), 18671953. viete,francois (Franciscus Vieta) (French mathematician), 1540-1603. Vigano
    http://www.junkfoodforthought.com/bio/bio_V.htm
    Vacarescu, Alecu (Walachian poet; son of Ienachita) Vacarescu, Iancu (Walachian poet, translator; son of Alecu) Vacarescu, Ienachita (Walachian scholar, poet) Vacarescu, Nicolae (Walachian poet; son of Ienachita) Vacarius (Italian legal scholar) c.1115/20-1198? Vachell, Horace Annesley (English writer) Vacherot, Etienne (French philosopher) Vade, Jean-Joseph (French poet, dramatist) Vadim, Roger (orig. V.D. Plemmianikow) (Fr. film dir., writer) Vaganova, Agrippina Yakovlevna (Russian dancer, teacher) Vaida-Voevod, Alexandru (Romanian politician) Vaihinger, Hans (German philosopher) Vail, Alfred Lewis (American pioneer in telegraphy) Vaillant, Edouard-Marie (French politician) Vair, Guillaume du (French writer, orator) Vakhtangov, Yevgeny (Russian theatrical director) Valancius, Motiejus (Lithuanian prelate, writer) Valaoritis, Aristotelis (Greek poet, politician) Val-de-Grace, Jean-Baptiste du (French revolutionist) Valdemar I (Valdemar the Great) (King of Denmark 1157-1182) Valdemar II (King of Denmark 1202-1241; son of Valdemar I) Valdes, Alfonso de (Spanish Humanist)

    73. STORIA DELLA MATEMATICA
    la circonferenza di raggio unitario è stato francois viete( 1540-1603
    http://digilander.libero.it/artemate/storiamrinascimento.htm
    Storia della matematica fino al rinascimento Schema delle tappe fondamentali, con qualche...... curiosità. XIII secolo d.c. Nonostante le numerose descrizioni del sistema di numerazione arabo, l'abbandono del vecchio sistema numerico romano avvenne molto lentamente, ciò forse perché era molto diffuso il calcolo con l'abaco e perciò i vantaggi non erano così evidenti. Il vecchio sistema di numerazione romano scomparve lentamente e per parecchi secoli vi fu una vera competizione fra tra " abbacisti " e " algoristi" e questi ultimi trionfarono solo nel XVI secolo. Vari autori contribuirono a rendere popolare il sistema indo-arabico : Villedieu, Halifax ma soprattutto Leonardo Pisano noto come FIBONACCI cioè " figlio di Bonaccio", che era un mercante italiano di Pisa . Il libro con cui Fibonacci descriveva il nuovo algoritmo venne completato nel 1202 e diventò un celebre classico dal titolo: " LIBER ABBACI" ossia libro dell'abaco. Con questo trattato vengono discussi i metodi e i problemi algebrici difendendo l'uso delle cifre arabe. RINASCIMENTO - XVI secolo -1500 La parola R inascimento richiama alla mente i tesori letterari e artistici d'Italia.

    74. 6.1 Francois Viéte (Dejiny Algebry)
    6.1 francois Viéte (1540 1603). viete uvádza ešte šest dalšíchpríkladov na túto metódu, ktorá pochádza od Cardana.
    http://www.matika.sk/zdroje/texty/recenz/Dejalg/Cast6/Part6-1.htm
    6. Vývin algebraickej symboliky od Viéta po Descarta
    Obsah

    Úvod

    6.1 Francois Viéte
    Thomas Harriot (1560 - 1621)

    René Descartes (1594 - 1650)

    Problémy, ktorých konštrukcia vyžaduje iba rovinné èiary a kružnice

    O povahe krivých èiar
    ...
    Literatúra

    6.1 Francois Viéte (1540 - 1603)
    Narodil sa vo francúzskom meste Fontenay. Tam dostal výchovu v kláštore rádu minoritov, odkia¾ postúpil ako 15 roèný roku 1555 na univerzitu v Poitiers. Po ukonèení právnických štúdií r. 1560. O štyri roky neskôr nastúpil na miesto sekretára rodiny Soubis. Jeho úlohou bolo napísa dejiny tohto rodu a uèi vtedy desaroènú Cathérine de Parthenay gréètinu, latinèinu, matematiku a astronómiu. Výsledkom tejto výuky bola Viétova prvá matematická publikácia Canon Mathematicus , ktorá vyšla roku v Paríži. Roku 1567 sa stal poslancom Parlamentu Bretagne a za Henricha 3. zastával vysokú funkciu krá¾ovského radcu. Poèas hugenotskej vojny 1584-1596 sa dostal do nemilosti, ale keï sa mu podarilo rozlúšti tajný šifrovaný list, preukázal ve¾kú službu krá¾ovi a ten ho znova menoval do pôvodnej funkcie. Roku 1589 vydáva v Tours knihu o dešifrovaní. Dešifrovanie znamená doslova preklad z cifier, ktoré sa po francúzsky povedia chiffre.

    75. A Closer Look At Cryptography
    (2). francois viete was born in 1540 in Fontenayle-Comte in France, anddied on December 13th, 1603 in Paris. He was a French mathematician
    http://www.facstaff.bucknell.edu/udaepp/090/w3/brads.htm
    Brad Stark Mysteries of Mathematics
    A Closer Look At Cryptography
    Ever since the earliest days of writing, people have had reasons to limit their information to a restricted group of people. Because of this, these people have had to develop ideas of making their information unable to be read by unwanted people. The general techniques used to hide the meaning of messages constitute the study known as cryptography. "Ciphers, in general fall into three major classifications: 1. Concealment Cipher, 2. Transposition Cipher, and 3. Substitution Cipher" (4). Cryptography protects information by altering its form, making it unreadable to unwanted people or groups of people. Cryptography, from the Greek kryptos, meaning hidden, and graphei , meaning to write. The origins of secret writing can be traced back nearly four millennia to the hieroglyphic writing system of the Egyptians. References to cryptography are also made in the bible. "One of the oldest known examples is the Spartan scytale: Plutarch tells how Lacedaemonian generals exchanged messages by winding narrow ribbons of parchment spirally around a cylindrical staff. The message was then inscribed on the parchment. When the ribbon was unwound, the writing could be read only by the person who had a cylinder of exactly the same size, upon which to rewind it, so that the letters would reappear in their normal order" (5). During the sixteenth, seventeenth and eighteenth centuries, interest in cryptography was very high. It was the custom in those days for important people, such as Mary of Stuart, the Charles I and II, and the Georges, to have private ciphers. During the eighteenth, nineteenth and twentieth centuries, cryptology played a major role in the military, especially in WWI and WWII, because the secrecy of communications is vital for success in war. "The effects of secret writings upon the outcome of the wars and diplomatic encounters of history are innumerable , and the devices used have ranged from the writing of hidden messages in a musical score to the arrangement of the fifty-two cards in a pack so that their order carried information" (5).

    76. List Of People By Name: V
    symbolist); Viereck, Peter?, poet; viete, francois?, (1540 1603),mathematician; Vietoris, Leopold, (1891 - 2002), mathematician;
    http://www.fastload.org/li/List_of_people_by_name:_V.html
    List of people by name: V
    Home Up
    About 'List of people by name: V'
    Advertisement
    List of people A B C ... U V W X Y Z ... astronomer and physicist Vaaler, Johan March 15 - ) inventor of the paperclip Vadim, Roger journalist actor ... screenwriter , and director Vadiz, Yolanda gospel music singer, soprano Vadnal, Alojzij[?] Slovene mathematician. Vaga, Pierin[?] ), painter Vainberg, Moisei[?] ), composer Valadon, Suzanne French painter Valance, Holly May 11 Australian musician Valdemar, Erik Anthon, Siboni[?] , composer Valdemar I of Denmark Valderrama, Carlos , (born September 2 Colombian football (soccer) player. Valderrama, Carlos Pive[?] soccer player Valdes, Rodrigo[?] , world champion boxer Valdez, Luis[?] , film director Valdivia, Pedro de Vale, Angelica[?] , actress Vale, Raul[?] , Venezuelan born Mexican citizen, comedian Valens , (A.D. Roman Emperor Valens, Richie , musician Valens, Ritchie May 13 February 2 ), US pop singer Valente, Caterina[?] January 14 - ), singer, actress Valente, Gary[?] , musician Valentin, Bobby[?] Puerto Rican Salsa music singer Valentine, Jean[?] , (Home Deep Blue) Valentinian I Roman Emperor Valentinian II Roman Emperor ... Valentino, Rudolph

    77. 80.07.11: A Chronological History Of ¹ With Developmental Activities In Problem
    Most of Western Europe now was involved in mathematics, but the central and mostmagnificent figure in the transitions was a Frenchman, francois viete.
    http://www.yale.edu/ynhti/curriculum/units/1980/7/80.07.11.x.html
    Yale-New Haven Teachers Institute Home
    A Chronological History of ¹ with Developmental Activities in Problem Solving
    by
    Anthony P. Solli
    Contents of Curriculum Unit 80.07.11:
    To Guide Entry
    Introduction :
    The unit begins with a historical development of ¹ and proceeds with examples of activities to help students develop a deeper appreciation of the mathematical beauty and values of ¹.
    Prerequisites :
    Students should have at least a working knowledge of fractions and decimals, plus an intuitive understanding of the nomenclature, terminology, vocabulary, and formulae of basic geometry.
    Level:
    The historical part of this unit may be used in any grade level, preferably middle school. The activities part could be used in any middle school level, although it is recommended for average and above average groups working in small groups or independently. It also may be used as a motivational or summary part of a geometry unit or pre algebra course. The length of time needed could be a week or two, depending on the amount of time you would spend on the history of ~r and doing all or some of the suggested activities.

    78. François Viète
    Translate this page LA VIE DE francois viete(frz). Biography of francois viete. Françoisviete (TU Freiberg). François Viète (Kantonsschule Kreuzlingen).
    http://home.t-online.de/home/099191080-0002/viete.htm
    Startseite
    Mathematik, Naturwissenschaften
    François Viète
    Lateinische Texte:
    LA VIE DE FRANCOIS VIETE (frz) Biography of Francois Viete François ... Viete (TU Freiberg) François Viète (Kantonsschule Kreuzlingen) Sammlung kurzer Texte und Bilder zu den bedeutenden Mathematikern St.-Michaels-Gymnasium Metten
    metten_gym@degnet.de

    79. Viktoriin NNN 8. Klass
    13. Sõnasta viete i teoreem! Prantsuse matemaatik francois viete mängis olulistrolli ka Prantsuse ajaloos (pole otseselt seotud matemaatikaga).
    http://vabrik.ee/karikas/8klass.htm

    80. The Modern Age - 17th Century
    Marin Getaldiæ made significant contributions to mathematics as a followerof the famous French mathematician francois viete. Working
    http://public.srce.hr/zuh/English/nv17_e.htm
    The Seventeenth Century Complete information is available only in Croatian
    Primas of Hungary, then went on to study philosophy and law at Padua. In 1575 he became a member of the Croatian fraternity of Saint Jerome in Rome. After his appointment as secretary to king Rudolph II in 1579, Vranèiæ began a more systematic study of the natural and technical sciences. From 1594 to 1598 he lived in Dalmatia and Italy, working in comparative lexicology and publishing his famous dictionary in five languages (Venice 1595). In 1598 Rudolph II made him a Bishop and royal cousellor for Hungary and Transylvania. He held this post up to 1605, when he left the Court, and entered the order of St Paul (the "Barnabites") in Rome. Returning to Rome, he devoted himself to experimental work with machine construction and architectural problems. After the Barnabite Giovanni Ambrogio Mazente introduced him to Leonardo's technical drawings he was inspired to write his most significant work, Machinae Novae
    II. Marko Antun de Dominis, Late Renaissance Physicist

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter