Geometry.Net - the online learning center
Home  - Scientists - Vandermonde Alexandre
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Vandermonde Alexandre:     more detail
  1. Graph theory: Graph (mathematics), Graph, Leonhard Euler, Alexandre-Théophile Vandermonde, Gottfried Leibniz

41. Bernard & Stephane CLAVREUIL - THOMAS-SCHELER Bookshop - PARIS - Bookseller Memb
vandermonde, alexandre-Théophile.
http://www.franceantiq.fr/slam/clavreuil/Form.asp?idTable=Clavreuil0504&Index=4

42. Online Encyclopedia - Vandermonde Matrix
k /math . vandermonde matrices were named after alexandreThéophilevandermonde (1735-1796), a French mathematician and musician.
http://www.yourencyclopedia.net/Vandermonde_matrix
Encyclopedia Entry for Vandermonde matrix
Dictionary Definition of Vandermonde matrix

In linear algebra , a Vandermonde matrix is a matrix with a geometric progression in each column, i.e; In mathematical terms: These matrices are useful in polynomial interpolation coefficents The determinant k -multiple columns are replaced by: Vandermonde matrices were named after Alexandre-Théophile Vandermonde ), a French mathematician and musician. Home Alphabetical Index See our sister sites: Find a Resume Diplomat City Your Quotations Your Lookup ... Your Dogs Content on this site is provided for informational purposes only. We do not accept responsibility for any loss, injury or inconvenience sustained by any person resulting from information published on this site.
This article is licensed under the GNU Free Documentation License . It uses material from Wikipedia see source

43. Page 126
V. vandermonde, alexandreTheophile (1735-1796), 96 vandermonde determinants, 96-100.A, B, C, D, E, F, G, H, I, L. M, N, O, P, Q, R, S, T, V, Cover page, Table of Contents,Page 1.
http://www.thiel.edu/mathproject/atps/INDEX/P126.HTM

44. PREVIOUS PAGE
or row) are the terms 1, r, r 2 , , r n 1 of a geometric progression are calledvandermonde determinants, named for alexandre-Théophile vandermonde (1735
http://www.thiel.edu/mathproject/atps/chptr09/p096.htm

45. Definic V
Translate this page Véase Waals, Joannes Diderik van der. van der Waerden, Bartel Leinder. VéaseWaerden, Bartel Leinder van der. vandermonde, alexandre Théophile.
http://ing.unne.edu.ar/Matem_diccion/p323_letra_v_definic.htm
V Vigésima letra del abecedario de mayúsculas que, en la numeración romana vale 5. v Vigésima letra del abecedario de minúsculas, que suele emplearse para representar la incógnita, y a veces, como característica de algunas funciones y como sigla de vector. Vacca, Giovanni Erudito italiano, nacido en 1872, a quien se deben varios estudios críticos sobre las obras de Harriot, Maurolico, Cavalieri, Lagrange y otros, así como algunos trabajos acerca de la Matemática China. Vailati, Giovanni Italiano (1863-1909), que publicó varias monografías sobre Filosofía Matemática y notables artículos en numerosas revistas, espacialmente en la de Métaphysique et de Morale de París. Valeiras, Antonio Argentino contemporáneo, nacido el año 1895, a quien se deben algunas memorias sobre ecuaciones integrales, construcción de cónicas, curva de Viviani, funciones monógenas, triángulo de perímetro mínimo, curvas unicursales y sistemas complejos de Humbert, que ha tomado como punto de arranque para desarrollar la teoría de funciones analíticas. Valentinuzzi, Máximo

46. Indice V
Translate this page van Ceulen, Ludolf. van der Waals, Joannes Diderik. van der Waerden, Bartel Leinder.vandermonde, alexandre Théophile. vara. Varahamihira. variabilidad. variable.
http://ing.unne.edu.ar/Matem_diccion/p323_ind_v.htm
INDICE LETRA "V" V v Vacca, Giovanni Vailati, Giovanni ... vórtice

47. Liste Alphabétique Des Mathématiciens
Translate this page Valiron (Georges), Français (1884-1959). vandermonde (alexandre), Français(1735-1796). Van der Waerden (Bartel Leendert), Néerlandais (1903- ).
http://www.cegep-st-laurent.qc.ca/depar/maths/noms.htm
Abel (Niels Henrik) Agnesi (Maria Guetana) Italienne (1718-1799) Alembert (Jean Le Rond d') Alexander (James Waddell) Alexandroff (Pavel Sergeevich) Russe (1896-1982) Apian (Peter Benneuwitz, dit) Allemand (1495-1552) Apollonios de Perga Grec(v.~262-v.~180) Appel (Paul) Grec (~287-~212) Aristote Grec (~384-~322) Arzela (Cesare) Italien (1847-1912) Ascoli (Guilio) Italien (1843-1896) Babbage (Charles) Anglais (1792-1871) Banach (Stefan) Polonais (1892-1945) Argand (Jean Robert) Suisse (1768-1822) Barrow (Isaac) Anglais (1630-1677) Bayes (Thomas) Anglais (1702-1761) Bellavitis (Giusto) Italien (1803-1880) Beltrami (Eugenio) Italien (1835-1900) Bernays (Paul) Suisse (1888-1977) Bernoulli (Daniel) Suisse (1700-1782) Bernoulli (Jacques) Suisse (1654-1705) Bernoulli (Jean) Suisse (1667-1748) Allemand (1878-1956) Bernstein (Sergei Natanovich) Russe (1880-1968) Bertrand (Josepn) Bessel (Friedrich) Allemand (1784-1846) Birkoff (George David) Bliss (Gilbert Ames) Bochner (Salomon) Allemand (1899-1982) Bolyai (Janos) Hongrois (1802-1860) Bolzano (Bernhard) Bombelli (Raffaele) Italien (1522-1572) Bonnet (Ossian) Boole (George) Anglais (1815-1864) Bourbaki (Nicolas) Braikenridge (William) Anglais (v.1700-1762)

48. Graph Theory (Section II)
alexandre Theophile vandermonde was a French mathematician who became interestedin the problem of, the twists and turns of a system of threads in space
http://www.markkeen.com/sectionii.htm
Graph Theory (Section II) Alexandre - Theophile Vandermonde was a French mathematician who became interested in the problem of, "the twists and turns of a system of threads in space ... and the manner in which the threads are interlaced." How one might annotate the path of the threads in a braid, knot or net and therefore fix for all time a method for recreating these objects was what Vandermonde sought. He considered, "a well-known problem, which belongs to this category, that of the , solved by Euler in 1759." Vandermonde’s "Remarques sur les Problemes de Situation" (Remarks on problems of position), which I shall paraphrase here, begins by outlining his system of notation for the division of space. His method is to first establish a plane of parallel lines that is then cut by a further plane of parallel lines running perpendicular to the first set such that both sets constitute a grid. We can now see that the shaded square in the above diagram is in the, "fourth strip of the first division and the third in the second division" of the plane. If we compare this system of notation to that of Cartesian co-ordinates then the ‘first division’ produces values of ‘x’ and the second, values of ‘y’. The shaded square can be represented by (4,3) in Cartesian notation. First list all possible squares on the board and their corresponding co-ordinates. I.e. 64 sets of co-ordinates.

49. List Of Mathematical Topics (V-Z)
theory of holomorphic functions van der Waerden, Bartel Leendert Van der Waerden stheorem vandermonde, alexandre-Théophile vandermonde matrix
http://www.sciencedaily.com/encyclopedia/list_of_mathematical_topics__v_z_
Match: sort by: relevance date
Free Services
Subscribe by email

RSS newsfeeds

PDA-friendly format
loc="/images/" A A A Find Jobs In: Healthcare
Engineering

Accounting College Contract / Freelance Customer Service Diversity Engineering Executive Healthcare Hospitality Human Resources Information Tech International Manufacturing Nonprofit Retail All Jobs by Job Type All Jobs by Industry
Relocating? Visit: Moving Resources
Moving Companies

Mortgage
Information
Mortgage Calculator
Real Estate Lookup Front Page Today's Digest Week in Review Email Updates ... Outdoor Living
Encyclopedia
Main Page See live article
List of mathematical topics (V-Z)
List of mathematical topics A-C D-F G-I ... Mathematicians
V
Vallée-Poussin, Charles de la Valuation (mathematics) Value distribution theory of holomorphic functions van der Waerden, Bartel Leendert Van der Waerden's theorem ... Variance Variational inequality VC diagram Vector (spatial) Vector bundle Vector calculus Vector field ... Vierbein Viete, Francois Vietoris, Leopold Vigenère Cipher Vigesimal Virasoro algebra ... Voxel Vries, Gustav de Vulgar fraction
W
Wall-Sun-Sun prime Wallpaper group Wallis, John

50. [FOM] Interesting Book
James 3 Sylvester, James 9 Tartaglia (Fontana) 32 Taylor, Brook 16 Tchebycheff, Pafnuty4 ValleePoussin, Charles de la 6 vandermonde, alexandre 1 Venn, John 1
http://www.cs.nyu.edu/pipermail/fom/2003-December/007780.html
[FOM] Interesting book
Harvey Friedman friedman at math.ohio-state.edu
Tue Dec 30 10:46:18 EST 2003 More information about the FOM mailing list

51. Vandermonde Matrix - Information
vandermonde matrices are named after alexandreThéophile vandermonde.In mathematical terms math V_{i,j} = \alpha_j^{i-1} /math .
http://www.book-spot.co.uk/index.php/Vandermonde_matrix
Vandermonde matrix - Information Home
Mathematical and natural sciences

Applied arts and sciences

Social sciences and philosophy
...
Interdisciplinary categories

In linear algebra , a Vandermonde matrix is a matrix with a geometric progression in each column, i.e; Vandermonde matrices are named after Alexandre-Théophile Vandermonde In mathematical terms: These matrices are useful in polynomial interpolation coefficients The determinant rank k -multiple columns are replaced by: All text is available under the terms of the GNU Free Documentation License (see for details). . Wikipedia is powered by MediaWiki , an open source wiki engine.

52. After The Discovery Of The General Solutions.
alexandre Théophile vandermonde (17351796) and JosephLouis Lagrange (16461716)did independent of each other find a description of the solution of the
http://hem.passagen.se/ceem/afterthe.htm
After the discovery of the general solutions
Quite lot of mathematicians came forward with different variations of the solution of equations of third and fourth degree after the Ars Magna. Most known are:
François Viète
Thomas Harriot
René Descartes
Ehrenfried Walter von Tschirnhaus
Leonhard Euler
(17071783) and
Étienne Bézout
(17301783) who did all construct different methods.
Tschirnhaus invented a transformation that transforms an equation of degree n to an equation of degree n without the terms x n-1 and x n-2 which the Swede Erland Samuel Bring (17361798) succeeded to improve for the quintic equation so that even the term x was eliminated.
George Birch Jerrard (18041863) later discovered, independent of Bring, a method of generalization of Brings result to an equation of any degree n Gottfried Wilhelm von Leibniz (16461716) seems to be the first to verify del Ferros formulas and thereby giving an algebraic proof in contrary to the earlier existing geometrical proofs. This was done by inserting the three solutions x ,x ,x in the expression (x-x )(x-x )(x-x which is documented in a letter he sent to Christian Huygens (16291695) in March 1673.

53. List Of Mathematical Topics (V-Z)
theory of holomorphic functions van der Waerden, Bartel Leendert Van der Waerden stheorem vandermonde, alexandre-Th?phile vandermonde matrix
http://www.wikisearch.net/en/wikipedia/l/li/list_of_mathematical_topics__v_z_.ht
Main Page Also see:
List of mathematical topics (V-Z)
See the list of mathematical topics for the purpose and extent of this list. A-C D-F G-I J-L ... S-U - V-Z
V
Vallée-Poussin, Charles de la Valuation (mathematics) Value distribution theory of holomorphic functions van der Waerden, Bartel Leendert Van der Waerden's theorem ... Variance Variational inequality Vector (spatial) Vector bundle Vector calculus Vector field ... Vierbein Viete, Francois Vietoris, Leopold Vigenère Cipher Vigesimal Virasoro algebra ... Voxel
W
Wall-Sun-Sun prime Wallpaper group Wallis, John Walsh function ... Wang tile Wantsel, Pierre Waring, Edward Waring's problem Wave Wave equation ... Whiston, William Wieferich, Arthur Wieferich prime Wieferich's criterion Wiener, Norbert Wiener equation ... Wren, Christopher Wrench, John Wye-delta transform
X
Xiaolin Wu's line algorithm Xor swap algorithm
Y
Y combinator Yarrow algorithm Yau, Shing-Tung Y-delta transform Yoccoz, Jean-Christophe Yoneda lemma
Z
Z-transform Zabusky Zabusky, Norman Zakrajsek, Egon

54. References For Vandermonde
References for alexandre Théophile vandermonde. Biography in Dictionaryof Scientific Biography (New York 19701990). Articles H
http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZ65F8.htm
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Articles:
  • Thales, recueil des travaux de l'Institut d'histoire des sciences IV
  • Enseignement Math.
  • J H Przytycki, History of the knot theory from Vandermonde to Jones, in XXIVth National Congress of the Mexican Mathematical Society
  • J J Tattersall, Who put the 'C' in A-T Vandermonde?, Historia Math.
  • J J Tattersall, Vandermonde's contributions to the early history of combinatorial theory, Eleventh British Combinatorial Conference, Ars Combin. (1988), C, 195-203. Close this window or click this link to go back to Vandermonde
    Welcome page
    Biographies Index
    History Topics Index
    Famous curves index ... Search Suggestions JOC/EFR December 1996 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Vandermonde.html
  • 55. Full Alphabetical Index
    Translate this page van Vleck, Edward (344*) vandermonde, alexandre (115) Vandiver, Harry (215) Varignon,Pierre (199) Vashchenko-Zakharchenko (241*) Veblen, Oswald (631*) Vega
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Flllph.htm
    Full Alphabetical Index
    Click on a letter below to go to that part of this file. A B C D ... XYZ Click below to go to the separate alphabetical indexes A B C D ... XYZ The number of words in the biography is given in brackets. A * indicates that there is a portrait.
    A
    Abbe , Ernst (602*)
    Abel
    , Niels Henrik (2899*)
    Abraham
    bar Hiyya (240)
    Abraham, Max

    Abu Kamil
    Shuja (59)
    Abu'l-Wafa
    al'Buzjani (243)
    Ackermann
    , Wilhelm (196)
    Adams, John Couch

    Adams, J Frank

    Adelard
    of Bath (89)
    Adler
    , August (114) Adrain , Robert (79) Aepinus , Franz (124) Agnesi , Maria (196*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (60) Ahmes Aida Yasuaki (114) Aiken , Howard (94) Airy , George (313*) Aitken , Alexander (825*) Ajima , Chokuyen (144) Akhiezer , Naum Il'ich (248*) al'Battani , Abu Allah (194) al'Biruni , Abu Arrayhan (306*) al'Haitam , Abu Ali (269*) al'Kashi , Ghiyath (73) al'Khwarizmi , Abu (123*) Albanese , Giacomo (282) Albert, Abraham Adrian (158*) Albert of Saxony Alberti , Leone (181*) Albertus Magnus, Saint (109*) Alcuin of York (237*) Aleksandrov , Pave (160*) Alembert , Jean d' (291*) Alexander , James (130*) Amringe , Howard van (354*) Amsler , Jacob (82) Anaxagoras of Clazomenae (169) Anderson , Oskar (67) Andreev , Konstantin (117) Angeli , Stefano degli (234) Anstice , Robert (209) Anthemius of Tralles (55) Antiphon the Sophist (125) Apollonius of Perga (276) Appell , Paul (1377) Arago , Dominique (345*) Arbogast , Louis (87) Arbuthnot , John (251*) Archimedes of Syracuse (467*) Archytas of Tarentum (103) Arf , Cahit (1452*) Argand , Jean (81) Aristaeus the Elder (44) Aristarchus of Samos (183)

    56. LOS MUSEOS CIENTÍFICO-TECNOLÓGICOS. Un Ensayo De Clasificación
    Translate this page A su muerte, en 1781, legó a Luis XVI su colección, quien nombró al miembrode la Academia de Ciencias, alexandre vandermonde director del llamado
    http://www.uv.es/~ten/p64.html
    Antonio E, Ten Ros IEDHC (Universidad de Valencia- CSIC) UN POCO DE HISTORIA. En esencia, un museo es un espacio de comunicación, más o menos permanente, dotado de un proyecto de educación no formal, que se plasma en un conjunto de objetivos edicativos transversales, generales y particulares, en función de sus posibles públicos objetivo (TEN, 1999). Sin embargo, esta definición genérica no puede ocultar que la naturaleza de un "museo" no puede separarse de su contexto socio-histórico y temporal. Cada época ha tenido sus museos propios, que han respondido a las necesidades de los colectivos que los han creado y que han tratado de superar las limitaciones de los anteriores. Puede hablarse, así de "generaciones de museos". Pero la aparición de nuevos colectivos sociales y, por tanto, de nuevos tipos de museos, no significa necesariamente la desaparición de los anteriores. Los cambios sociales, educativos y económicos que marcan la evolución de la sociedad no son Los logros impresionantes de la ciencia y la técnica, desde comienzos del siglo XIX, propiciaron el fenómeno de las "exposiciones", tanto regionales, temáticas, nacionales o universales, que adquirió proporciones sorprendentes, tanto en Europa como en América o en algunos países de Asia. Tras el éxito de la primera gran exposición universal de Londres (GIBBS, 1981), que durante seis meses registró una media de visitas de 42.831 visitantes diarios, una serie inninterrumpida de exposiciones se inauguró a lo largo del siglo. En 1853 abren las de Nueva York y Dublin; en 1854 la de Munich y en 1855 la "Exposición internacional de productos de la industria", de París, en la que participaron 34 naciones y que marcó un nuevo hito. En 1888 llegan a celebrarse ¡cinco exposiciones universales!

    57. Knight's Tour Notes, Part Cx: Biobibliography
    vandermonde, alexandreThéophile (b. 1735 – d. 1796); Remarques sur lesProblemes de Situation, Memoires de l Academie des Sciences 1771.
    http://www.ktn.freeuk.com/cx.htm
    Bio-bibliography of Knight's Tours
    Back to KTN Index Page Scroll down or click on the required letter:
    A B C D ... Z
    Full names of authors, together with dates of birth and death and other biographical details, where known and felt to be relevant, are given, followed by titles of their books or journals in which articles were published. For fuller titles, description of contents and other details go to the appropriate date in the Chronology pages. Names are listed in strict alphabetical order. Surnames preceded by prefixes or in two parts are cited under both parts (e.g. van der Linde is under V and L). Much of the biographical information on British names is gleaned from the Dictionary of National Biography and from Jeremy Gaige's Bio-bibliography of British Chess Personalia A ; ms 1791. Adam (Le Jeune), Carle Des Mouvements du Cavalier Adamson, Henry Anthony Chess Amateur 1922, and in Fairy Chess Review Addison, George Augustus Indian Reminiscences Adli ; See al-Adli. 'Adsum' = Bouvier. Ahrens, Wilhelm Ernst Martin Georg Mathematische Spiele Mathematische Unterhaltungen und Spiele Akenhead, (Major) J

    58. Rediscovery Of The Knight's Tour
    make a significant original contribution to the subject, though he only gave theone 8×8 tour, was the mathematician alexandreThéophile vandermonde, in an
    http://www.ktn.freeuk.com/1b.htm
    Rediscovery of the Knight's Problem 1725 - 1825 Back to KTN Index Page Early History section de Mairan 1725. The modern study of the knight's problem appears to have begun in the 18th century without knowledge of the mediaeval work, save perhaps for the half-board tour in Guarini's work. The subject first reappeared in Jacques Ozanam's , which was a compilation in the tradition of C. G. Bachet's which first appeared in 1612, and was imitated in numerous other collections of puzzles, tricks, mathematical recreations and popular scientific effects for entertainment and instruction at social gatherings. The first edition of Ozanam's work was published in 1694 but (according to one of the later editors, C. Hutton) Ozanam died in 1717.
    l'Essai d'analyse sur les jeux de hasard , Paris 1708. A slight variation of the de Moivre tour in which the last three moves are reflected is mentioned in the text and is sometimes diagrammed in later accounts. It is evident that these tours do not reach the same degree of development as was achieved by Suli 800 years earlier. All are open tours. The de Moivre tour is on the same plan as the Mani tour in that it starts in a corner and skirts the edges of the board, as far as possible, before filling the centre. The de Montmort tour is similar to the al-Amuli tour and earlier tours formed by connecting half-board tours. Euler 1759.

    59. La Società Dell Informazione, Un Mito Ricorrente
    Translate this page Nel marzo 1795, alexandre vandermonde, titolare della prima cattedra di economiapolitica istituita nella Francia post-rivoluzionaria, scriveva queste parole a
    http://www.italian.it/isf/home454.htm
    I NOSTRI
    DOSSIER Operazione "Enduring Freedom"
    Tra libertà di informazione, censura di guerra e autocensura G8 a Genova: I fatti di luglio
    In collaborazione con:
    Federazione nazionale della stampa e Associazione stampa ligure
    torna alla HOMEPAGE
    La società dell'informazione, un mito ricorrente
    L'ultimo libro di Armand Mattelart di Marco D'Eramo
    19 aprile 2002

    Non può fare a meno di venire in mente Internet, con tutte le sue promesse di democrazia diretta, tanto più che il telegrafo fu definito a suo tempo «la strada istantanea del pensiero». Questo brano è il progenitore di infinite altre promesse di pace universale e di democrazia diffusa che saranno apportate dall'ultima - in ordine di tempo - innovazione tecnologica. I saint-simoniani credevano per esempio che le ferrovie avrebbero messo fine alle guerre perché avrebbero permesso ai popoli di conoscersi tra loro (mentre le tradotte avrebbero portato divisioni e munizioni al fronte in misura inaudita prima di allora).
    Il passaggio di Vandermonde è citato da Armand Mattelart (nella foto) come esempio della tesi portante della sua Storia della società dell'informazione: «A ogni ciclo tecnologico si rinnoverà il discorso redentore sulla promessa di concordia universale, di democrazia decentrata, di giustizia sociale e prosperità generale. E ogni volta si ripeterà anche il fenomeno dell'amnesia nei confronti della tecnologia precedente.

    60. Loodus- Ja Täppisteadlaste Eluaastaid
    V Vallée Poussin, Charles (18661962) (matemaatik) vandermonde, alexandre Théophile(1735-1796) (matemaatik) Vavilov, Sergei (1891-1951) (RUS füüsik) Venn
    http://www.physic.ut.ee/~janro/

    A
    B C D ... Y A
    Abbe, Ernst
    Abbot, Charles Greeley
    Abel, Niels Henrik (1802-1829) (NOR matemaatik)
    Abelson, Philip Hauge
    Abraham, Max
    Abrikossov, Aleksei A.
    Adams, John Couch (1819-1892) (GBR astronoom)
    Aepinus, Franz Ulrich Theodor
    Agnesi, Maira Gaetana (1718-1799) (matemaatik) d'Alembert, Jean Baptiste Le Round (1717-1783) (FRA filosoof ja matemaatik) Amontons, Guillaume Ampére, André Marie Anaxagoras Anaximandros Anaximenes Apollonios, Pergest (~260-~170 e.m.a.) (kreeka matemaatik) Arago, Dominique Francois Aragon Armand Archimedes Aristarchos (320-250 e.m.a.) Aristoteles Arzela, Cesare (1847-1912) (matemaatik) Tagasi algusesse / Up B Babinet, Jacques Bacon, Roger (1214-1294) (inglise filosoof ja looduseuurija) Baire, Louis René (1874-1932) (matemaatik) Banach, Stefan (1892-1945) (POL matemaatik) Barrow, Isaac Bartels, Johann Martin Christian (1769-1836) (matemaatik) Bartholinus, Erasmus (1625-1698) (DEN loodusteadlane) Bateman, Harry (1882-1946) (matemaatik) Bayes, Thomas (1702-1761) (GBR matemaatik) Becquerel, Antoine Henri Bell, Alexander Graham

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter