Geometry.Net - the online learning center
Home  - Scientists - Vandermonde Alexandre
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Vandermonde Alexandre:     more detail
  1. Graph theory: Graph (mathematics), Graph, Leonhard Euler, Alexandre-Théophile Vandermonde, Gottfried Leibniz

21. Monge, Gaspard, Comte De Péluse
book reviews) ( Library Journal)vandermonde, alexandreThéophile (1735-1796)
http://www.infoplease.com/ce5/CE035058.html
in All Infoplease Almanacs Biographies Dictionary Encyclopedia
Infoplease Tools

22. Alexandre-Théophile Vandermonde
NebulaSearch Home NebulaSearch Encyclopedia Top alexandreTh©ophilevandermonde. alexandre-Th©ophile vandermonde, NebulaSearch
http://www.nebulasearch.com/encyclopedia/article/Alexandre-Théophile_Vandermo
NebulaSearch Home NebulaSearch Encyclopedia Top
Alexandre-Th©ophile Vandermonde Alexandre-Th©ophile Vandermonde NebulaSearch article for Alexandre-Th©ophile Vandermonde There is currently no article with this title.
Related Links
  • Th©ophile Gautier - El©ments en vue de l'©tude de l'oeuvre de Th©ophile Gautier.
    http://perso.wanadoo.fr/hmwh.leferrand/martine/cours/cours21.htm
  • Alexandre le Grand - Biographie de lempereur (356-323 avant J©sus-Christ) et de son entourage. Les batailles, l'apr¨s Alexandre, citations.
    http://perso.wanadoo.fr/buddyop/alexandre/
  • Alexandre Kojeve - A life in four sentences.
    http://www.heartfield.demon.co.uk/kojeve.htm
  • La Fraisiere St-Alexandre - A family business producing strawberries, raspberries and other berries. Offers picked or self-picking, as well as related products.
    http://www.fraisierest-alexandre.com/
  • Alexandre Tansman (1897-1986) - Brief biographical sketch with Naxos discographies of his orchestral and instrumental works.
    http://web02.hnh.com/composer/btm.asp?fullname=Tansman,%20Alexandre
  • New Kensington-Arnold District : Alexandre Dumas - Teacher provides an in-depth look at the author's life and his literary significance.
  • 23. Polynomial Interpolation
    y_n \end{pmatrix} Where the leftmost matrix is commonly referred to as a vandermondematrix , so named after the mathematician alexandreThéophile vandermonde
    http://www.nebulasearch.com/encyclopedia/article/Polynomial_interpolation.html
    NebulaSearch Home NebulaSearch Encyclopedia Top
    Polynomial interpolation Main Index
    Philmont,_New_York..................Semiramis

    Plumbum..................Potter_County,_South_Dakota

    Polonaise..................Ponderay,_Idaho
    ...
    Polymer_chain..................Polyomino

    Polynomial interpolation NebulaSearch article for Polynomial interpolation
    Polynomial interpolation is the act of fitting a polynomial to a given function with defined values in certain discrete data points. This "function" may actually be any discrete data (such as obtained by sampling ), but it is generally assumed that such data may be described by a function. Polynomial interpolation is an area of inquiry in numerical analysis
    Polynomial interpolation relies on Weierstrass' theorem which states that for any function f that is continuous on the interval [a,b] there exists a sequence of polynomial s such that if:
    then
    holds, where n is the degree of the polynomial. is the set of all n:th degree polynomials, and also form a linear space with the dimension n+1 . The monomials form a basis for this of this space.

    24. ALEMBERT, Jean Le Rond D';VANDERMONDE, Alexandre-Théophile;, Rapport à L'Acad
    vandermonde, alexandre-Théophile; Rapport à l Académiedes Sciences sur le Traité élémentaire de Méchanique de l Abbé Bossut.
    http://www.polybiblio.com/basane/408.html
    Librairie Thomas-Scheler
    ALEMBERT, Jean le Rond d';VANDERMONDE, Alexandre-Théophile; Rapport à l'Académie des Sciences sur le Traité élémentaire de Méchanique de l'Abbé Bossut. Paris Fait au Louvre 1775 Manuscrit de 7 pages et demi in-4, conservé dans un étui en demi-veau moderne. This item is listed on Bibliopoly by Librairie Thomas-Scheler ; click here for further details.

    25. HighBeam Research: ELibrary Search: Results
    12. vandermonde, alexandreThéophile (1735-1796) The HutchinsonDictionary of Scientific Biography; January 1, 1998 vandermonde
    http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_dictiona

    26. HighBeam Research: ELibrary Search: Results
    Helicon Publishing 14. vandermonde, alexandreThéophile (1735-1796)The Hutchinson Dictionary of Scientific Biography; January 1, 1998
    http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_dictiona

    27. Alexandre Théophile Vandermonde
    Translate this page alexandre Théophile vandermonde nasceu no dia 28 de fevereiro de 1735 em Paris,França, e morreu no dia 1º de janeiro de 1796, também em Paris.
    http://www.brasil.terravista.pt/magoito/1866/Historia/vandermonde.htm
    S Gaspard Monge que ficou conhecido como femme de Monge. V E knight's tour problem

    28. Alexandre-Théophile Vandermonde - Wikipedia, The Free Encyclopedia
    Polynomial interpolation Wikipedia, the free encyclopedia where the leftmost matrix is commonly referred to as a vandermonde matrix,so named after the mathematician alexandre-Théophile vandermonde.
    http://en.wikipedia.org/wiki/Alexandre-Théophile_Vandermonde
    Alexandre-Théophile Vandermonde
    Categories Mathematicians
    From Wikipedia, the free encyclopedia.
    Alexandre-Théophile Vandermonde 28 February 1 January ) was a French musician and chemist who worked with Bezout and Lavoisier ; his name is now principally associated with determinant theory in mathematics . He was born in Paris , and died there. He was a violinist, and became engaged with mathematics only around 1770. In Mémoire sur la résolution des équations (1771) he reported on symmetric functions and solution of cyclotomic polynomials ; this paper anticipated later Galois theory . In Remarques sur des problèmes de situation (1771) he studied knight's tours Mémoire sur des irrationnelles de différens ordres avec une application au cercle (1772) was on combinatorics , and Mémoire sur l'élimination (1772) on the foundations of determinant theory. These papers were presented to the Académie des Sciences , and constitute all his published mathematical work. The Vandermonde determinant does not make an explicit appearance. A special class of matrices , the Vandermonde matrices are named after him.

    29. SmartPedia.com - Free Online Encyclopedia - Encyclopedia Books.
    of Russia. alexandreThéophile vandermonde, alexandre-Vincent PineuxDuval, alexandre -Théodore -Victor, comte de Lameth. alexandre
    http://www.smartpedia.com/smart/browse/Special:Allpages&from=Alexander_C._Ruther
    Search:
    Math and Natural Sciences
    Applied Arts Social Sciences Culture ... Interdisciplinary Categories
    All pages
    Alexander C. Rutherford Alexander Calder Alexander Cambridge, 1st Earl of Athlone Alexander Campbell ... Caption This
    This document is licensed under the GNU Free
    Documentation License (GFDL), which means that you can
    copy and modify it as long as the entire work
    (including additions) remains under this license.
    GFDL
    SOURCE

    30. Matemática Do Científico E Do Vestibular
    Translate this page en colunas. Nota alexandre vandermonde - músico (violino) e matemáticofrancês do século XVIII - 1735/1796. Observe que na
    http://www.terra.com.br/matematica/arq12-12.htm
    Determinante de matrizes de Vandermonde Chama-se matriz de Vandermonde a toda matriz quadrada de ordem n x n , ou seja, com n linhas e n colunas, da forma geral:
    Matriz de Vandermonde com n linhas e n colunas.
    Nota: Alexandre Vandermonde - músico (violino) e matemático francês do século XVIII - 1735/1796.
    Observe que na matriz de Vandermonde acima, temos:
    a) a primeira linha é composta por bases do tipo a i (i N , conjunto dos números naturais) elevado a zero, ou seja, a , a , ... , a n elevadas ao expoente zero e portanto são todas iguais a 1, pois a = 1 para todo a R , conjunto dos números reais.
    b) a segunda linha é composta por bases do tipo a i elevado à unidade, ou seja, a , a , ... , a n elevadas ao expoente um e portanto são todas iguais a si próprio, pois a = a para todo a R . Sendo assim, a matriz genérica acima pode ser reescrita na forma abaixo:
    Numa matriz de Vandermonde, os elementos a , a , a , ... , a n são denominados elementos característicos da matriz. Assim por exemplo, na matriz de Vandermonde abaixo,
    os elementos característicos são 5, 6 e 7. Observe que a matriz é de Vandermonde pois na terceira linha os elementos são obtidos da segunda linha, quadrando cada termo, ou seja:

    31. Vandermonde Matrix
    where. vandermonde matrices were named after alexandreTh?phile vandermonde (1735-1796),a French mathematician and musician. This article is from Wikipedia.
    http://www.fact-index.com/v/va/vandermonde_matrix.html
    Main Page See live article Alphabetical index
    Vandermonde matrix
    In linear algebra , a Vandermonde matrix is a matrix with a geometric progression in each column, i.e; In mathematical terms: These matrices are useful in polynomial interpolation , since solving an equation for , is equivalent to finding the coefficents of a polynomial that has values at . The determinant of a square Vandermonde matrix of a dimension can be expressed as follows: If two or more exponents are equal, the rank of the matrix decreases (if all are distinct, then is of full rank). This problem can alleviated by using a generalisation called confluent Vandermonde matrices, where the k -multiple columns are replaced by:
    where
    Vandermonde matrices were named after Alexandre-Théophile Vandermonde ( ), a French mathematician and musician.
    This article is from Wikipedia . All text is available under the terms of the GNU Free Documentation License

    32. Polynomial Interpolation
    Where the leftmost matrix is commonly referred to as a vandermonde matrix,so named after the mathematician alexandreTh?phile vandermonde.
    http://www.fact-index.com/p/po/polynomial_interpolation.html
    Main Page See live article Alphabetical index
    Polynomial interpolation
    Polynomial interpolation is the act of fitting a polynomial to a given function with defined values in certain discrete data points. This "function" may actually be any discrete data (such as obtained by sampling ), but it is generally assumed that such data may be described by a function. Polynomial interpolation is an area of inquiry in numerical analysis Polynomial interpolation relies on Weierstrass' theorem which states that for any function that is continuous on the interval there exists a sequence of polynomials such that if: then holds, where is the degree of the polynomial. is the set of all n:th degree polynomials, and also form a linear space with the dimension . The monomials form a basis for this of this space. Table of contents 1 Fitting a Polynomial to Given Data Points
    2 Non-Vandermonde Solutions

    3 The Error of Polynomial Interpolation

    4 Disadvantages of Polynomial Interpolation
    Fitting a Polynomial to Given Data Points
    We want to determine the constants so that the resulting polynomial of degree interpolates some given data set . From the amount of information obtained from the data set, we see that we cannot fit a polynomial of greater degree than , so we assume that and:

    33. Www.batmath.it Di Maddalena Falanga E Luciano Battaia
    Translate this page numeri per tutti i valori di r. Si ottiene la seguente formula, detta Formula diconvoluzione di vandermonde (alexandre Theophile vandermonde, 1735-1796)
    http://www.batmath.it/matematica/a_combin/binomio_proprieta.htm
    Home page Calcolo combinatorio
    Proprietà dei coefficienti binomiali
    Esercizi risolti Esercizi proposti I numeri godono di alcune interessanti proprietà che qui vogliamo provare, anche come esempio di calcoli tipici con questi coefficienti. . Si tratta di una proprietà che discende immediatamente dalla formula del binomio di Newton. Infatti il primo membro rappresenta il coefficiente di a k b n-k , ovvero il numero di volte che si deve scegliere a tra gli n fattori del prodotto; è naturale che questo stesso numero deve essere uguale al numero di volte che si deve scegliere b tra gli stessi fattori, che è il secondo membro. Si può comunque anche fare una dimostrazione diretta. Si ha infatti: . Basta applicare la formula del binomio di Newton con a=b= 1. Questa formula ha un importante applicazione. Dato infatti un insieme E di n n è dunque il numero dei sottoinsiemi di un un insieme con n elementi. Si veda cliccando qui una dimostrazione alternativa, basata sulle disposizioni, dello stesso fatto. . Anche qui basta applicare la formula del binomio di Newton con a =1 e b Considerato un insieme E di n elementi, fissiamo un suo elemento, diciamolo

    34. Alexandre-Théophile Vandermonde
    The summary for this Russian page contains characters that cannot be correctly displayed in this language/character set.
    http://www.math.rsu.ru/mexmat/kvm/MME/dsarch/Vandermond.html
    Îòåö Àëåêñàíäðå-Òåîôèëà Âàíäåðìîíäà áûë âðà÷îì. Îí ïîîùðÿë ñûíà áðàòüñÿ çà êàðüåðó â ìóçûêå. Alexandre-Theophile ïîëó÷èë çâàíèå áàêàëàâðà 7 ñåíòÿáðÿ 1755 è ëèöåíçèþ 7 ñåíòÿáðÿ 1757.
     1777 îí èçäàë ðåçóëüòàòû ýêñïåðèìåíòîâ, êîòîðûå îí âûïîëíèë ñ Áåçó è õèìèêîì Ëàâîèñèåðîì, â ñïåöèôè÷åñêîì èññëåäîâàíèè ïðè î÷åíü ñåðüåçíîì ìîðîçå, êîòîðûé áûë â 1776. Äåñÿòüþ ãîäàìè ïîçæå îí èçäàë äâå ñòàòüè ïî ïðîèçâîäñòâåííîé ñòàëè, îáúåäèíåííàÿ ðàáîòà ñ Monge è Bertholet. Öåëü ýòîãî èññëåäîâàíèÿ ñîñòîÿëà â òîì, ÷òîáû óëó÷øèòü ñòàëü, èñïîëüçóåìóþ äëÿ øòûêîâ.
    m th ñòåïåíåé êîðíåé óðàâíåíèÿ.  åãî âòîðîé ñòàòüå Âàíäåðìîíä ðàññìîòðåë ïðîáëåìó òóðà ðûöàðÿ íà øàõìàòíîé äîñêå. Ýòà ñòàòüÿ - ðàííèé ïðèìåð èçó÷åíèÿ òîïîëîãè÷åñêèõ èäåé. Âàíäåðìîíä ðàññìàòðèâàåò ïåðåïëåòåíèå êðèâûõ, ïðîèçâåäåííûõ ïåðåìåùàþùèìñÿ ðûöàðåì, è åãî ðàáîòà â ýòîé îáëàñòè îòìå÷àåò íà÷àëî èäåé, êîòîðûå áûëè áû ïðîäîëæåíû ñíà÷àëà àóññîì è çàòåì Ìàêñâåëëîì â êîíòåêñòå ýëåêòðè÷åñêèõ ñõåì.  òðåòüåé ñòàòüå  Âàíäåðìîíä èçó÷àë êîìáèíàòîðíûå èäåè. Îí îïðåäåëèë ñèìâîë
    [P] n = p (p-1) (p-2) (p-3) ... (p-n+1)

    35. Institut De France - Recherche
    et Belles-Lettres vandermonde (alexandre, Théophile) Classe des
    http://www.institut-de-france.fr/franqueville/premier_siecle/rech_premier_v.htm
    L
    A
    B C D ... Z
    L
    PAR LE COMTE DE FRANQUEVILLE, MEMBRE DE L'INSTITUT. V

    VAILLANT (le Comte Jean-Baptiste, Philibert)
    des Sciences
    VALADIER (Giuseppe)
    VALENCIENNES (Achille)
    (section d'Anatomie)
    VALETTE (Claude, Denis, Auguste)
    VALLDEMOSA (Francesco, Frontera de) VALMONT DE BOMARE (Jacques, Christophe) VALPERGA DI CALUSO (Tomaso) Classe VALSAMACHI (le Chevalier Demetrius) Classe (section d'Astronomie) VAN BENEDEN (Pierre, Joseph) (section d'Anatomie) VANDERBOURG (le Vicomte Martin, Marie, Charles de BOUDENS de) Classe Classe (section de Sculpture) Classe des Beaux-Arts (section de Botanique) Classe des Sciences VASQUEZ-QUEIPO (don Vincente) VATOUT (Jean) VAUBLANC (le Comte Vincent, Marie VIENNOT de) VAUDOYER (Antoine, Laurent, Thomas) VAUQUELIN (Nicolas, Louis)

    36. Great Mathematicians
    d Alembert, Jean Le Rand, (17171783), France, Wave Motion, Mechanics.vandermonde, alexandre, (1735-1796), France, Group Theory. Lagrange
    http://www.sali.freeservers.com/engineering/maths.html
    Free Web site hosting - Freeservers.com Web Hosting - GlobalServers.com Choose an ISP NetZero High Speed Internet ... Dial up $14.95 or NetZero Internet Service $9.95 Home Page About Me Contact Me Photo Gallery 1 Photo Gallery 2 Family Album Engineering Stuff Sports Stuff Tennis Page Favorite People Links Galore Cool Links Kerala Page About Calicut HTML Tutorial Guest Book Home Page Engg. Home CFD Engg. Books ... NITT Faculty
    The finest mathematicians of all time who had a profound influence in the development of pure and applied mathematics
    Name Period Country Field of Contribution Descartes, Rene France Invented Analytical Geometry Fermat, Pierre de France Gregory, James Scotland Numerical Interpolation Newton, Isaac England Inventor of Differential and Integral Calculus Leibnitz, Gottfried Wilhem Germany Along with Newton he is also credited for invention of Calculus Raphson, Joseph England Numerical Integration Rolle, Michel France Rolle's Theorem Bernoulli, Jakob Swiss Mathematical Probability and Elasticity L'Hôpital, Guillaume François France L'Hôpital Rule Bernoulli, Johann

    37. Mathematicians From DSB
    Translate this page Tschirnhaus, Ehrenfried Walter, 1651-1708. vandermonde, alexandre-Théophile,1735-1796. Viète, François, 1540-1603. Wallace, William, 1768-1843.
    http://www.henrikkragh.dk/hom/dsb.htm
    Last modification: document.write(document.lastModified)
    Webmaster

    Validate html
    Mathematicians from the Dictionary of Scientific Biography (DSB)
    Abel, Niels Henrik Argand, Jean Robert Artin, Emil Beltrami, Eugenio Bérard, Jacques Étienne Bérard, Joseph Frédéric Berkeley, George Bernoulli, Johann (Jean) I Bernoulli, Jakob (Jacques) I Bertrand, Joseph Louis François Bessel, Friedrich Wilhelm Bianchi, Luigi Bjerknes, Carl Anton Bjerknes, Vilhelm Frimann Koren Bolyai, Farkas (Wolfgang) Bolyai, János (Johann) Bolzano, Bernard Bombelli, Rafael Borel, Émile (Félix-Édouard-Justin) Bouquet, Jean-Claude Briot, Charles Auguste Cantor, Georg Carathéodory, Constantin Cardano, Girolamo Cauchy, Augustin-Louis Cayley, Arthur Chebyshev, Pafnuty Lvovich Clairaut, Alexis-Claude Clausen, Thomas Clebsch, Rudolf Friedrich Alfred Colden, Cadwallader Collinson, Peter Condorcet, Marie-Jean-Antoine-Nicolas Caritat, marquis de Cramer, Gabriel Crelle, August Leopold d'Alembert, Jean le Rond de Morgan, Augustus Dedekind, (Julius Wilhelm) Richard Delambre, Jean-Baptiste Joseph Descartes, René du Perron

    38. Systèmes De Vandermonde
    vandermonde (en l honneur du mathématicienfrançais alexandre vandermonde (1735-1796)) apparaissent naturellement
    http://lumimath.univ-mrs.fr/~jlm/travaux/livretab/node23.html
    Suite: Sommaire: Retour: Calcul de vecteurs propres
    N q i en N x i par rapport aux inconnues w j P x qui valent 1 en x j et aux autres points x n q i P x ) dans la base de Newton 1, x x x x x x x x x x x x N
    1.Algorithme Soit N un entier x x x x N B la matrice BW Q Q W
    Pour tout entier j on pose P j x N Montrer que la matrice ( A j k j k est l'inverse de la matrice B . En conclure que pour tout P j , donc qui calcule l'inverse de la matrice B . Pour calculer les coefficients de P j P j N j x j
    Posons P x x x x x x x N P x N P x x N c N x N c x c c j Pour cela posons N j x b N x N b x b Etablir que Connaissant les coefficients de N j N j x j P j En effet posons t N b N t k x j t k b k Montrer que t N j x j c j de P Pour tout entier k Q k x x x x x x x k Q k sous la forme Etablir que et pour k N 2.Programmation P x VraiDim N B x x x Vraidim VDM_Mat=ARRAY[1..VraiDim] OF REAL; P c c c N VDM_Poly=ARRAY[1..VraiDim] OF REAL; PROCEDURE PolyNoyau(X:VDM_Mat;VAR Noyau:VDM_Poly); x x x VraiDim X x j X[j] ) fait ressortir dans la variable Noyau les coefficients c c c VraiDim c j dans Noyau[j] P x x x x x VraiDim P x x VraiDim c VraiDim x VraiDim c
    En effectuant le produit de la matrice A A j k j k par la matrice B on constate que AB P j x k j k ce qui prouve que A est l'inverse de B
    N j x P x N j x x x j b k c k x j b k N j x j
    ) n'est autre que l'algorithme de Horner.

    39. Alexandre-Théophile Vandermonde Definition Meaning Information Explanation
    Polynomial interpolation Definition Meaning Information Where the leftmost matrix is commonly referred to as a vandermonde matrix,so named after the mathematician alexandreTh©ophile vandermonde.
    http://www.free-definition.com/Alexandre-Theophile-Vandermonde.html
    A B C D ...
    Contact

    Beta 0.71 powered by:

    akademie.de

    PHP

    PostgreSQL

    Google News about your search term
    Alexandre-Th©ophile Vandermonde
    Alexandre-Th©ophile Vandermonde (28 February -1 January ) was a French musician and chemist who worked with Bezout and Lavoisier; his name is now principally associated with determinant theory in mathematics . He was born in Paris , and died there. He was a violinist, and became engaged with mathematics only around 1770. In M©moire sur la r©solution des ©quations (1771) he reported on symmetric function s and solution of cyclotomic polynomials; this paper anticipated later Galois theory . In Remarques sur des probl¨mes de situation (1771) he studied knight's tours. M©moire sur des irrationnelles de diff©rens ordres avec une application au cercle (1772) was on combinatorics , and M©moire sur l'©limination (1772) on the foundations of determinant theory. These papers were presented to the Acad©mie des Sciences , and constitute all his published mathematical work. The Vandermonde determinant does not make an explicit appearance. Books about 'Alexandre-Th©ophile Vandermonde' at: amazon.com

    40. Bernard & Stephane CLAVREUIL - THOMAS-SCHELER Bookshop - PARIS - Bookseller Memb
    4 ALEMBERT, Jean le Rond d vandermonde, alexandre-Théophile.
    http://www.franceantiq.fr/slam/clavreuil/Cat.asp?idTable=Clavreuil0504&index=*

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter