Geometry.Net - the online learning center
Home  - Scientists - Van Schooten Frans
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 102    1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Van Schooten Frans:     more detail
  1. People From Leiden: Jan Van Goyen, Herman Boerhaave, Frans Van Schooten, Jan Bake, Rembrandt, Rodney Glunder, Geertgen Tot Sint Jans
  2. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  3. 1615 Births: Pope Innocent Xii, Daniel Schultz, Frans Van Schooten, Nicolas Fouquet, Richard Baxter, Dara Shikoh, Salvator Rosa
  4. 1660 Deaths: Diego Velázquez, Charles X Gustav of Sweden, Thomas Harrison, Frans Van Schooten, Vincent de Paul, Thomas Welles, Gaston
  5. Leiden University Faculty: Albert Einstein, Heike Kamerlingh Onnes, Hendrik Lorentz, Paul Ehrenfest, Herman Boerhaave, Frans Van Schooten
  6. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2009-07-17
  7. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  8. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  9. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10

1. Frans Van Schooten - Encyclopedia Article About Frans Van Schooten. Free Access,
encyclopedia article about Frans van Schooten. Frans van Schooten in Free onlineEnglish dictionary, thesaurus and encyclopedia. Frans van Schooten.
http://encyclopedia.thefreedictionary.com/Frans van Schooten
Dictionaries: General Computing Medical Legal Encyclopedia
Frans van Schooten
Word: Word Starts with Ends with Definition Franciscus Schooten Centuries: 16th century - 17th century - 18th century Decades: 1560s 1570s 1580s 1590s 1600s - Years: 1610 1611 1612 1613 1614 -
Events
  • June 2 - First Récollet missionaries arrive at Quebec City, from Rouen, France.
  • The second volume of Miguel Cervantes' Don Quixote is published.
  • End of the Sengoku Period in Japan.

Click the link for more information. May 29 May 29 is the 149th day of the year in the Gregorian calendar (150th in leap years). There are 216 days remaining.
Events
  • 1167 - Battle of Legano, in which The Lombard League defeats Emperor Frederick I
  • 1414 - Council of Constance
  • 1453 - Ottoman armies under Sultan Mehmed II Fatih capture Constantinople after a siege, ending the Byzantine Empire.
  • 1660 - English Restoration: Charles II is restored to the throne of England

Click the link for more information. Centuries: 16th century - 17th century - 18th century Decades: 1610s 1620s 1630s 1640s 1650s - Years: 1655 1656 1657 1658 1659 -
Events
  • February 23 - Charles XI becomes king of Sweden.

2. Frans Van Schooten
Frans van Schooten. post a message on this topic. post a message on a new topic. 23 Mar 1999 Frans van Schooten, by Samuel S. Kutler. 24 Mar 1999. Re Frans van Schooten, by Antreas P. Hatzipolakis .
http://mathforum.com/epigone/math-history-list/nimoxplal
a topic from math-history-list
Frans van Schooten
post a message on this topic
post a message on a new topic

23 Mar 1999 Frans van Schooten , by Samuel S. Kutler
24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
25 Mar 1999 Re: Frans van Schooten , by Rickey, F. PROF MATH
25 Mar 1999 Re: Frans van Schooten , by Samuel S. Kutler
The Math Forum

3. Frans Van Schooten
Frans van Schooten. Franciscus Schooten (1615 May 29, 1660) was a Dutchmathematician who is most known for popularizing the analytic
http://www.fact-index.com/f/fr/frans_van_schooten.html
Main Page See live article Alphabetical index
Frans van Schooten
Franciscus Schooten May 29 ) was a Dutch mathematician who is most known for popularizing the analytic geometry of René Descartes Schooten read Descartes's Géométrie (an appendix to his Discours de la méthode ) while it was still unpublished. Finding it hard to understand, he went to France to study the works of other important mathematicians of his time, such as François Viète and Pierre de Fermat . Returning to his own city of Leiden , he became a professor of mathematics, his most important pupil being Christiaan Huygens . Very important was his commentary on the Géométrie , which made the work understandable to the broader mathematical community, and thus was responsible for the spread of analytic geometry to the world. Schooten's efforts also made Leiden the centre of the mathematical community for a short period in the middle of the 17th century
This article is from Wikipedia . All text is available under the terms of the GNU Free Documentation License

4. MATH-HISTORY-LIST Archives - March 1999
Frans van schooten frans van Schooten (43 lines) From Samuel S.Kutler skutler@sjca.edu Date Tue, 23 Mar 1999 083948 -0500;
http://www.maa.org/scripts/WA.EXE?A1=ind9903&L=math-history-list

5. Liens Aux Biographies
Translate this page van schooten frans (1615-1660) SIMPSON Thomas (1710-1761) STEINHAUS Hugo (1887-1972)STIRLING James (1692-1770) STUDENT GOSSET William (1876-1937).
http://www.cict.fr/cict/personnel/stpierre/histoire/node33.html
Next: Bibliographie Up: L'histoire du calcul des Previous: Les axiomes de Kolmogorov
Liens aux biographies
Pages Web
BAYES
Thomas (1702-1761)
BERNOULLI
Jaques (1654-1705)
BERNOULLI
Jean (1667-1748)
BERNOULLI
Nicolas (1687-1759)
BIENAYME

BOREL
Emile (1871-1956)
de CARCAVI
Pierre (1600-1684)
CARDANO
Girolamo (1501-1576)
CAUCHY
Augustin (1789-1857)
FELLER
William (1906-1970) de FERMAT Pierre (1601-1665) FISHER Ronald (1890-1962) de FONTENELLE Bernard (1657-1757) GALILEI Galileo (1564-1642) GAUSS Carl Friedrich (1777-1855) HUYGHENS Christiaan (1629-1695) KHAYYAM Omar (1048-1122) KHINTCHINE Alexandre (1894-1959) KOLMOGOROV Andrei (1903-1987) LAGRANGE Joseph-Louis (1736-1813) LAMBERT Johann (1728-1777) LAPLACE Pierre Simon, Marquis de (1749-1827) LEBESGUE Henri (1875-1941) LEGENDRE Adrien-Marie (1752-1833) von LEIBNIZ Gottfried Wilhelm (1646-1716) LEVY Paul (1886-1971) MARKOV Andrei (1856-1922) de MOIVRE Abraham (1667-1754) MONTMORT Pierre (1678-1719) NEWTON Sir Isaac (1643-1727) PACIOLI Luca (1445-1517) PASCAL Blaise (1623-1662) PEARSON Karl (1857-1936) POISSON QUETELET Lambert (1796-1874) RIEMANN Bernhard (1826-1866) de ROBERVAL Gilles (1602-1675) van SCHOOTEN Frans (1615-1660) SIMPSON Thomas (1710-1761) STEINHAUS Hugo (1887-1972) STIRLING James (1692-1770) STUDENT: GOSSET William (1876-1937) TARTAGLIA Nicolo (1500-1557) TCHEBYCHEV WALLIS John (1616-1703) YULE George (1871-1951) Next: Bibliographie Up: L'histoire du calcul des Previous: Les axiomes de Kolmogorov Dana Meisel

6. Van Schooten's Parabola
van schootens Parabelzirkel. Der in der nebenstehenden Abbildung dargestellte Gelenkmechanismus wurde im 17. Jahrhundert von frans van schooten, einem niederländischen Mathematiker, erfunden und
http://members.aol.com/geometrie11/koorgeom/vparabel.html
Van Schootens Parabelzirkel
Der in der nebenstehenden Abbildung dargestellte Gelenkmechanismus wurde im 17. Jahrhundert von Frans van Schooten, einem niederländischen Mathematiker, erfunden und ist in einem von ihm veröffentlichten Buch beschrieben. Wenn man den Punkt G an der waagerechten Führungsschiene entlangzieht, bewegt sich das orthogonale Lineal GD und die Raute BFGH mit. Am Schnittpunkt D der Rautendiagonale und des orthogonalen Lineals ist ein Zeichenstift befestigt, der den Parabelbogen zeichnet. Weiter unten finden Sie ein zugehöriges Applet, mit dem der Zirkel simuliert wird. Die roten Punkte können nach dem Anklicken bei gedrückter linker Maustaste gezogen werden. Folgen Sie den Anweisungen in den Aufgaben.
Aufgaben
  • Führen Sie die Bewegungen aus um den Parabelbogen zu zeichnen.
  • Welche Lage hat die Gerade BH bezüglich der Parabel?
  • Vergleichen Sie diese Anordnung mit der auf einem früheren Arbeitsblatt und erläutern Sie die Funktionsweise des Zirkels. Welche Aufgabe hat insbesondere die Raute FGHB? Falls Sie noch keine Kenntnis über die Parabel als Ortslinie haben, informieren Sie sich zunächst, indem Sie auf Parabel klicken.
  • 7. Artnet.com: Resource Library: Schooten, Floris Van
    Pieter Aertsen and Joachim Beuckelaer. van Schootens breakfastpieces, with an accumulation of simplified content (e.g. Haarlem, frans Halsmus.). This signals a transition from
    http://www.artnet.com/library/07/0767/T076766.asp
    Home site map members login new member sign up member services ... contact us Artists artist index Galleries gallery index new galleries featured specialty city focus ... testimonials Events international auction results new in museums Research fine art auctions database african art auctions database grove dictionary of art museums ... Directory Magazine news features reviews books ... newsletter archive JavaScript is disabled within your browser, several site items like the menu will not show up correctly.
    Schooten [Verschoten] , Floris (Gerritsz.) van
    b c. d fl There are more than 45,000 articles in The Grove Dictionary of Art . To access the rest of this article, including the bibliography, subscribe to www.groveart.com . To find out more about this subject, click on a related article below and subscribe to www.groveart.com
    • Schooten, Floris (Gerritsz.) van Reproduced by kind permission of Macmillan Publishers Limited, publishers of The Grove Dictionary of Art
      Artnet Worldwide Corporation, New York, NY.

    8. Schooten
    frans van schooten. Born 1615 in Leiden, Netherlands Died 29 May 1660in Leiden, Netherlands. Click the picture above to see a larger version
    http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Schooten.html
    Frans van Schooten
    Born: 1615 in Leiden, Netherlands
    Died: 29 May 1660 in Leiden, Netherlands
    Click the picture above
    to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Frans van Schooten should not be confused with his father, Frans van Schooten (the elder), who was professor at the engineering school in Leiden. He enrolled at the University of Leiden in 1631 and he studied mathematics there. In 1637 Descartes visited Leiden and met van Schooten. This proved important for van Schooten since Descartes provided contacts for van Schooten to become acquainted with Mersenne 's circle in Paris. Some time after this he went abroad, travelling first to Paris and then to London where he stayed from 1641 to 1643. He discussed mathematics in these two centres and he continued to correspond with the mathematicians he met in these towns after his return to Leiden, but unfortunately this correspondence is now lost. While in Paris he obtained manuscripts 's work and he later published them in Leiden.

    9. Schooten, Frans Van
    Catalog of the Scientific Community. schooten, frans van. Note the creators of the Galileo Project and this catalogue cannot answer email on genealogical questions. 1. Dates. Born Leiden, ca.
    http://es.rice.edu/ES/humsoc/Galileo/Catalog/Files/schooten.html
    Catalog of the Scientific Community
    Schooten, Frans van
    Note: the creators of the Galileo Project and this catalogue cannot answer email on genealogical questions.
    1. Dates
    Born: Leiden, ca. 1615 (Nieuw Nederlandsch Biographisch Woordenboek does not insert the "ca.")
    Died: Leiden, 29 May 1660
    Dateinfo: Birth Uncertain
    Lifespan:
    2. Father
    Occupation: Academic, Engineer
    Frans van Schooten (the elder), professor at the engineering school connected with Leiden. The father was also a military engineer.
    No clear indication of financial status.
    3. Nationality
    Birth: Dutch
    Career: Dutch
    Death: Dutch
    4. Education
    Schooling: Leiden
    Enrolled in Leiden in 1631. No source says anything about a degree, and given the tendency always to mention one, I assume then that Schooten did not persevere to one. He travelled to Paris and London about 1637, and there met the leading mathematicians. He was back in Leiden in 1643.
    5. Religion
    Affiliation: Calvinist
    6. Scientific Disciplines
    Primary: Mathematics
    He was trained in mathematics at Leiden, and he met Descartes there in 1637 and read the proofs of his Geometry.
    In Paris he collect manuscripts of the works of Viète, and in Leiden he published Viète's works.

    10. Poster Of Schooten
    frans van schooten. lived from 1615 to 1660. van schooten was oneof the main people to promote the spread of Cartesian geometry.
    http://www-gap.dcs.st-and.ac.uk/~history/Posters2/Schooten.html
    Frans van Schooten lived from 1615 to 1660 Van Schooten was one of the main people to promote the spread of Cartesian geometry. Find out more at
    http://www-history.mcs.st-andrews.ac.uk/history/
    Mathematicians/Schooten.html

    11. Schooten
    Biography of frans van schooten (16151660) frans van schooten. Born 1615 in Leiden, Netherlands frans van schooten should not be confused with his father, frans van schooten (the elder), who was professor at the
    http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Schooten.html
    Frans van Schooten
    Born: 1615 in Leiden, Netherlands
    Died: 29 May 1660 in Leiden, Netherlands
    Click the picture above
    to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Frans van Schooten should not be confused with his father, Frans van Schooten (the elder), who was professor at the engineering school in Leiden. He enrolled at the University of Leiden in 1631 and he studied mathematics there. In 1637 Descartes visited Leiden and met van Schooten. This proved important for van Schooten since Descartes provided contacts for van Schooten to become acquainted with Mersenne 's circle in Paris. Some time after this he went abroad, travelling first to Paris and then to London where he stayed from 1641 to 1643. He discussed mathematics in these two centres and he continued to correspond with the mathematicians he met in these towns after his return to Leiden, but unfortunately this correspondence is now lost. While in Paris he obtained manuscripts 's work and he later published them in Leiden.

    12. [HM] Frans Van Schooten By Samuel S. Kutler
    HM frans van schooten by Samuel S. Kutler. reply to this message. post a message on a new topic. Back to historia. Subject HM frans van schooten Author Samuel S. EST) Friends Here is what
    http://mathforum.com/epigone/historia/clexsuswah
    [HM] Frans van Schooten by Samuel S. Kutler
    reply to this message
    post a message on a new topic

    Back to historia
    Subject: [HM] Frans van Schooten Author: s-kutler@sjca.edu Date: The Math Forum

    13. Encyclopedia4U - Frans Van Schooten - Encyclopedia Article
    frans van schooten. This article is licensed under the GNU Free DocumentationLicense. It uses material from the Wikipedia article frans van schooten .
    http://www.encyclopedia4u.com/f/frans-van-schooten.html
    ENCYCLOPEDIA U com Lists of articles by category ...
    Encyclopedia Home Page
    SEARCH :
    Frans van Schooten
    Franciscus Schooten May 29 ) was a Dutch mathematician who is most known for popularizing the analytic geometry of René Descartes Schooten read Descartes's Géométrie (an appendix to his Discours de la méthode ) while it was still unpublished. Finding it hard to understand, he went to France to study the works of other important mathematicians of his time, such as François Viète and Pierre de Fermat . Returning to his own city of Leiden , he became a professor of mathematics, his most important pupil being Christiaan Huygens . Very important was his commentary on the Géométrie , which made the work understandable to the broader mathematical community, and thus was responsible for the spread of analytic geometry to the world. Schooten's efforts also made Leiden the centre of the mathematical community for a short period in the middle of the 17th century
    Content on this web site is provided for informational purposes only. We accept no responsibility for any loss, injury or inconvenience sustained by any person resulting from information published on this site. We encourage you to verify any critical information with the relevant authorities.
    Privacy
    This article is licensed under the GNU Free Documentation License . It uses material from the Wikipedia article " Frans van Schooten

    14. Van Schooten's Hyperbola
    van schooten's Hyperbola. The mechanical linkage below appears in the work of frans van schooten, a Dutch mathematician who lived
    http://www.addr.com/~dscher/vhyp.html
    Van Schooten's Hyperbola
    The mechanical linkage below appears in the work of Frans van Schooten, a Dutch mathematician who lived in the 17th century. The rod through points C and A is attached to a board at point C and pivots around this point. Point F is also a stationary point attached to the board. As you drag point A, notice that rhombus ADFE expands and contracts. Point B (the traced point) lies at the intersection of the rod through CA and the rod passing through rhombus vertices D and E. Even though the hyperbola has two separate branches, notice how the linkage operates in one smooth, continuous motion. Can you describe the position of the linkage's arms at the two asymptotes of the hyperbola? Scroll down when you're ready.
    Sorry, this page requires a Java-compatible web browser.
    Perhaps the best way to understand why this linkage draws hyperbolas is to first study the Folded Circle construction . After you've done so, click once on the "show" button above. You'll see a red circle with center at C passing through point A. Drag point A around the circle. Do you see the similarity between this construction and the Folded Circle method? What's the purpose of rhombus ADFE?
    View
    Van Schooten's original illustration of this linkage.

    15. Schooten | Frans | Van | 1615-1660 | Dutch Mathematician
    the project the collections biographies multimedia researchuses. schooten frans van 16151660 Dutch mathematician.
    http://www.nahste.ac.uk/pers/s/GB_0237_NAHSTE_P1087/
    the project the collections biographies multimedia the project the collections biographies multimedia ... Index Chartarum in M.S. C. in folio

    16. Curva Foliata
    description of a foliate curve. A modern hand has pencilled in 7 a schooten ,referring to geometer frans van schooten (16151660). Index.
    http://www.nahste.ac.uk/cgi-bin/view_isad.pl?id=GB-0237-David-Gregory-Dk-1-2-1-Q

    17. Van Schooten's Parabola
    van schooten's Parabola. The mechanical linkage below appears in the work of frans van schooten, a Dutch mathematician who lived in the 17th century. As you drag point G, you'll notice that rhombus
    http://www.addr.com/~dscher/schooten.html
    Van Schooten's Parabola
    The mechanical linkage below appears in the work of Frans van Schooten, a Dutch mathematician who lived in the 17th century. As you drag point G, you'll notice that rhombus BFGH expands and contracts. Rod FD is attached to the rhombus at F and H. Rod GD is perpendicular to the track along which G slides. Can you explain why point D traces a parabola? As a hint, use the locus definition of a parabola: the set of points equidistant from a fixed point (the focus) and a fixed line (the directrix). You should also think about the purpose served by rhombus BFGH. Note: you can clear the trace of point D by clicking on the red 'X' at the bottom right-hand corner.
    Sorry, this page requires a Java-compatible web browser.
    View Van Schooten's original illustration of this linkage. For a closely related construction, see The Folded Rectangle Return to Geometry in Motion

    18. Re: Frans Van Schooten By Samuel S. Kutler
    Re frans van schooten by Samuel S. Kutler. reply to this message posta message on a new topic Back to messages on this topic Back
    http://mathforum.org/epigone/math-history-list/nimoxplal/v01540b00b3201a43e012@[
    Re: Frans van Schooten by Samuel S. Kutler
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to math-history-list
    Subject: Re: Frans van Schooten Author: s-kutler@sjca.edu Date: http://www.ohiolink.edu/ http://www.umi.com/ The Math Forum

    19. Frans Van Schooten By Samuel S. Kutler
    frans van schooten by Samuel S. Kutler. reply to this message post a message ona new topic Back to messages on this topic Back to mathhistory-list next
    http://mathforum.org/epigone/math-history-list/nimoxplal/v01540b02b31d03bf41b3@[
    Frans van Schooten by Samuel S. Kutler
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to math-history-list
    Subject: Frans van Schooten Author: s-kutler@sjca.edu Date: The Math Forum

    20. HyperbelSchooten
    Hyperbelzirkel des frans van schooten. Auf dieser Seite wird eine Simulaton des Hyperbelzirkels von frans van schooten (16151660) gezeigt.
    http://members.aol.com/geometrie11/koorgeom/vhyperb.htm
    Hyperbelzirkel des Frans van Schooten
    Auf dieser Seite wird eine Simulaton des Hyperbelzirkels von Frans van Schooten (1615-1660) gezeigt. Van Schooten versuchte die bis dahin benutzten Fadenkonstruktionen durch einen stabileren Gelenkmechanismus zu ersetzen, dessen Originalabbildung man in der nebenstehenden Abbildung ansehen kann. Der Punkt A kann in der Simulation frei um C herum bewegt werden, was bei einem realen Gestänge natürlich nicht möglich ist, so dass hier sogar ein Teil des linken Hyperbelastes gezeichnet werden kann, obwohl das mit einem wirklichen Hyperbelzirkel nicht geht. Dies ist der Tribut, den man wegen der Einfachheit des Programmiersystems zahlen muss
    Reset durch Eintippen von "r"
    Aufgaben
  • Zeichnen Sie zunächst eine Hyperbel durch Ziehen am Punkt D. Verändern Sie dann die Lage des Punktes F und wiederholen Sie die Zeichnung.
  • Welche Lage hat die Gerade LM bezüglich der Hyperbel?
  • Welche Aufgabe hat die Raute im Gelenkmechanismus?
  • Schalten Sie das Koordinatensystem ein und zeigen Sie, dass die Koordinaten von P die Hyperbelgleichung erfüllen. Wie sind hier a und b zu wählen?
  • A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 102    1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter