Geometry.Net - the online learning center
Home  - Scientists - Thymaridas
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 56    1  | 2  | 3  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Thymaridas:     more detail

1. History Of Mathematics: Chronology Of Mathematicians
Theudius of Magnesia (c. 350?) thymaridas (c. 350) Dinostratus (fl
http://aleph0.clarku.edu/~djoyce/mathhist/chronology.html
Chronological List of Mathematicians
Note: there are also a chronological lists of mathematical works and mathematics for China , and chronological lists of mathematicians for the Arabic sphere Europe Greece India , and Japan
Table of Contents
1700 B.C.E. 100 B.C.E. 1 C.E. To return to this table of contents from below, just click on the years that appear in the headers. Footnotes (*MT, *MT, *RB, *W, *SB) are explained below
List of Mathematicians
    1700 B.C.E.
  • Ahmes (c. 1650 B.C.E.) *MT
    700 B.C.E.
  • Baudhayana (c. 700)
    600 B.C.E.
  • Thales of Miletus (c. 630-c 550) *MT
  • Apastamba (c. 600)
  • Anaximander of Miletus (c. 610-c. 547) *SB
  • Pythagoras of Samos (c. 570-c. 490) *SB *MT
  • Anaximenes of Miletus (fl. 546) *SB
  • Cleostratus of Tenedos (c. 520)
    500 B.C.E.
  • Katyayana (c. 500)
  • Nabu-rimanni (c. 490)
  • Kidinu (c. 480)
  • Anaxagoras of Clazomenae (c. 500-c. 428) *SB *MT
  • Zeno of Elea (c. 490-c. 430) *MT
  • Antiphon of Rhamnos (the Sophist) (c. 480-411) *SB *MT
  • Oenopides of Chios (c. 450?) *SB
  • Leucippus (c. 450) *SB *MT
  • Hippocrates of Chios (fl. c. 440) *SB
  • Meton (c. 430) *SB

2. History Of Mathematics: Greece
Nicaea Hipparchus, Sporus, Theodosius. Paros thymaridas. Perga Apollonius. Pergamum Apollonius Theudius of Magnesia (c. 350?) thymaridas (c. 350) Dinostratus (c
http://aleph0.clarku.edu/~djoyce/mathhist/greece.html
Greece
Cities
  • Abdera: Democritus
  • Alexandria : Apollonius, Aristarchus, Diophantus, Eratosthenes, Euclid , Hypatia, Hypsicles, Heron, Menelaus, Pappus, Ptolemy, Theon
  • Amisus: Dionysodorus
  • Antinopolis: Serenus
  • Apameia: Posidonius
  • Athens: Aristotle, Plato, Ptolemy, Socrates, Theaetetus
  • Byzantium (Constantinople): Philon, Proclus
  • Chalcedon: Proclus, Xenocrates
  • Chalcis: Iamblichus
  • Chios: Hippocrates, Oenopides
  • Clazomenae: Anaxagoras
  • Cnidus: Eudoxus
  • Croton: Philolaus, Pythagoras
  • Cyrene: Eratosthenes, Nicoteles, Synesius, Theodorus
  • Cyzicus: Callippus
  • Elea: Parmenides, Zeno
  • Elis: Hippias
  • Gerasa: Nichmachus
  • Larissa: Dominus
  • Miletus: Anaximander, Anaximenes, Isidorus, Thales
  • Nicaea: Hipparchus, Sporus, Theodosius
  • Paros: Thymaridas
  • Perga: Apollonius
  • Pergamum: Apollonius
  • Rhodes: Eudemus, Geminus, Posidonius
  • Rome: Boethius
  • Samos: Aristarchus, Conon, Pythagoras
  • Smyrna: Theon
  • Stagira: Aristotle
  • Syene: Eratosthenes
  • Syracuse: Archimedes
  • Tarentum: Archytas, Pythagoras
  • Thasos: Leodamas
  • Tyre: Marinus, Porphyrius
Mathematicians
  • Thales of Miletus (c. 630-c 550)

3. Ptosis Blog
Plato. Pythagoras. Salem. Theaetetus. thymaridas. Zenodorus. Esoteric Science
http://ptosis.blogspot.com/2003_06_22_ptosis_archive.html

get rid of this ad
advertise here
Ptosis Blog
Contact me
Powered by TagBoard Message Board
Name
URL or Email
Messages( smilies
Links Archives Honolulu Hawaii saga of the Land of Aloha on the island of Oahu where there is a shortage of consonants and rental units Rental woes HRS Landlord tenant rules
Saturday, June 28
The only bar sponsored referral service in the State! Serving Hawaii�s people for over 27 years!
8:30 am-4:30 pm,
Weekdays
AUTO ATTENDANT AFTER HOURS
HAWAII STATE BAR ASSOCIATION (HSBA) Telephone: 537-1868
1136 Union Mall, PH 1 Fax: 521-7936 Honolulu, HI 96813 Contact: Coralie Matayoshi Location: Oahu Office Hours: 8:00 a.m. - 5:00 p.m. M-F Brief Description: Non-Profit Organization The HSBA is a 5,000 member organization that represents all attorneys licensed to practice in the state of Hawaii. Its mission is "to unite and inspire Hawaii's lawyers to promote justice, serve the public, and improve the legal profession." In addition to fulfilling various administrative and financial functions on behalf of the Supreme Court, the HSBA and its hundreds of attorney volunteers execute numerous projects for the benefit of its members and the public. Cases Accepted: LawLine - a 24-hour telephone message service with over 40 tapes on the courts, procedure, and substantive law areas. Includes current hot topic bulletin. Call 528-LAWS or neighbor island toll free 1-800-382-LAWS. *See LawLine

4. Greek Index
Theon of Alexandria. Theon of Smyrna. thymaridas. Xenocrates. Zeno of Elea
http://stm21645-01.k12.fsu.edu/Greek_Index.htm
Index of Greek mathematicians
Below are various lists of Greek mathematicians.
Full list

Mathematicans/Philosophers

Mathematicians/Astronomers

Mathematicians/Astronomers/Philosophers
...
Later circle squarers

Click on a name to go to that biography. Some History Topics about Greek mathematics.
Squaring the circle

Doubling the cube

Trisecting an angle

Greek Astronomy
Full List of Greek Mathematicians in our archive Anaxagoras Anthemius Antiphon Apollonius ... Zenodorus Greek Mathematicans/Philosophers Anaxagoras Antiphon Archytas Aristotle ... Zeno of Elea Greek Mathematicians/Astronomers Apollonius Archimedes Aristarchus Aristotle ... Theon of Smyrna Greek Mathematicians/Astronomers/Philosophers Aristotle Cleomedes Democritus Eudoxus ... Thales Greek Circle squarers Anaxagoras Antiphon Apollonius Archimedes ... Bryson Carpus Dinostratus Hippias Hippocrates Nicomedes ... Sporus Later Circle squarers al'Haitam Johann Bernoulli Cusa Franco of Liège James Gregory Lambert Leonardo Lindemann ... Search Suggestions JOC/EFR April 1999 The URL of this page is: http://www-history.mcs.st-andrews.ac.uk/history/Indexes/Greek_index.html

5. Thymaridas
thymaridas of Paros. Born about 400 BC in Paros, Greece Died about 350 BC.Show birthplace location. We are told a little about thymaridas life.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Thymaridas.html
Thymaridas of Paros
Born: about 400 BC in Paros, Greece
Died: about 350 BC
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
We are told a little about Thymaridas' life. He was apparently a rich man but, for some reason we are not told about, he fell into poverty. Thestor of Poseidonia sailed to Paros to help him with money specially collected for his benefit. Thymaridas was a Pythagorean and a number theorist who wrote on prime numbers Iamblichus tells us that Thymaridas called a prime number rectilinear since it can only be represented one-dimensionally. Non-primes such as 6 are represented by rectangles of sides 2 and 3. We are also told that he called 'one' a 'limiting quantity' or a 'limit of fewness'. Thymaridas also gave methods for solving simultaneous linear equations which became known as the 'flower of Thymaridas'. For the n equations in n unknowns x x x x n S
x x a
x x a
x x n a n
then Thymaridas gives the solution x a a a n S n He also shows how certain other types of equations can be put into this form.
Article by: J J O'Connor and E F Robertson Click on this link to see a list of the Glossary entries for this page List of References (2 books/articles) Mathematicians born in the same country Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
History Topics

Societies, honours, etc.

6. Thymaridas
Biography of thymaridas (400BC350BC) thymaridas of Paros. Born about 400 BC in Paros, Greece We are told a little about thymaridas' life. He was apparently a rich man but, for some reason
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Thymaridas.html
Thymaridas of Paros
Born: about 400 BC in Paros, Greece
Died: about 350 BC
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
We are told a little about Thymaridas' life. He was apparently a rich man but, for some reason we are not told about, he fell into poverty. Thestor of Poseidonia sailed to Paros to help him with money specially collected for his benefit. Thymaridas was a Pythagorean and a number theorist who wrote on prime numbers Iamblichus tells us that Thymaridas called a prime number rectilinear since it can only be represented one-dimensionally. Non-primes such as 6 are represented by rectangles of sides 2 and 3. We are also told that he called 'one' a 'limiting quantity' or a 'limit of fewness'. Thymaridas also gave methods for solving simultaneous linear equations which became known as the 'flower of Thymaridas'. For the n equations in n unknowns x x x x n S
x x a
x x a
x x n a n
then Thymaridas gives the solution x a a a n S n He also shows how certain other types of equations can be put into this form.
Article by: J J O'Connor and E F Robertson Click on this link to see a list of the Glossary entries for this page List of References (2 books/articles) Mathematicians born in the same country Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
History Topics

Societies, honours, etc.

7. References For Thymaridas
References for thymaridas. Biography The URL of this page is http//wwwhistory.mcs.st-andrews.ac.uk/References/thymaridas.html.
http://www-gap.dcs.st-and.ac.uk/~history/References/Thymaridas.html
References for Thymaridas
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Books:
  • T L Heath, A History of Greek Mathematics (2 Vols.) (Oxford, 1921). Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR April 1999 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/References/Thymaridas.html
  • 8. Thymaridas
    thymaridas. Born about 400 BC in Paros, Greece Died about 350 BC in Notknown. thymaridas was a number theorist who wrote on prime numbers.
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Thymrds.htm
    Thymaridas
    Born: about 400 BC in Paros, Greece
    Died: about 350 BC in Not known
    Show birthplace location Previous (Chronologically) Next Biographies Index
    Previous
    (Alphabetically) Next Welcome page Thymaridas was a number theorist who wrote on prime numbers. He called a prime number rectilinear since it can only be represented one-dimensionally. Non-primes such as 6 are represented by rectangles of sides 2 and 3. We are told a little about Thymaridas life. He was apparently a rich man but, for some reason we are not told about, he fell into poverty. Thestor of Poseidonia sailed to Paros to help him with money specially collected for his benefit. Thymaridas also gave methods for solving simultaneous linear equations. For the n equations in n unknowns x + x + x + ... + x = S
    x + x = a
    x + x = a
    x + x = a
    then Thymaridas gives the solution x = ((a + a + .... + a ) - S)/(n-2). He also shows how certain other types of equations can be put into this form. References (2 books/articles) Previous (Chronologically) Next Biographies Index
    Previous
    (Alphabetically) Next Welcome page
    History Topics Index
    Famous curves index ... Search Suggestions JOC/EFR December 1996 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Thymaridas.html

    9. References For Thymaridas
    References for thymaridas. JOC/EFR December 1996 The URL of this page is http//wwwhistory.mcs.st-andrews.ac.uk/history/References/thymaridas.html.
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZ848F.htm
    References for Thymaridas
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Articles:
  • T L Heath, A History of Greek Mathematics I (Oxford, 1921), 69, 72, 94. Close this window or click this link to go back to Thymaridas
    Welcome page
    Biographies Index
    History Topics Index
    Famous curves index ... Search Suggestions JOC/EFR December 1996 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Thymaridas.html
  • 10. Full Alphabetical Index
    List of mathematical biographies indexed alphabetically Thurston, Bill (582*) thymaridas ( 186) Tibbon, Jacob ben (198
    http://www-groups.dcs.st-and.ac.uk/~history/Indexes/Full_Alph.html
    Full Alphabetical Index
    Click below to go to one of the separate alphabetical indexes A B C D ... XYZ The number of words in the biography is given in brackets. A * indicates that there is a portrait.
    A
    Abbe , Ernst (602*)
    Abel
    , Niels Henrik (2899*)
    Abraham
    bar Hiyya (641)
    Abraham, Max

    Abu Kamil
    Shuja (1012)
    Abu Jafar

    Abu'l-Wafa
    al-Buzjani (1115)
    Ackermann
    , Wilhelm (205*)
    Adams, John Couch

    Adams, J Frank

    Adelard
    of Bath (1008) Adler , August (114) Adrain , Robert (1317*) Adrianus , Romanus (419) Aepinus , Franz (822) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (2362*) Aitken , Alec (1220*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (861) al-Nasawi , Abu (681) al-Nayrizi , Abu'l (621) al-Qalasadi , Abu'l (1247) al-Quhi , Abu (1146) al-Samarqandi , Shams (202) al-Samawal , Ibn (1569) al-Sijzi , Abu (708) al-Tusi , Nasir (1912*) al-Tusi , Sharaf (1138) al-Umawi , Abu (1014) al-Uqlidisi , Abu'l (1028) Albanese , Giacomo (282) Albategnius (al-Battani) (1333*)

    11. TYMARIDAS De Paros
    Translate this page thymaridas De Paros Vers 400 – vers 350 av JC. On sait que thymaridasfut un homme très riche, mais personne ne sait pourquoi
    http://coll-ferry-montlucon.pays-allier.com/tymar.htm
    THYMARIDAS
    De Paros
    Vers 400 – vers 350 av J.C.
    On sait que Thymaridas fut un homme très riche, mais personne ne sait pourquoi il devint un jour très pauvre !
    C’était un pythagoricien et un théoricien des nombres et il a beaucoup écrit sur le sujet. Il s’est intéressé à la résolution d’équations simples. Projet Educatif Européen « SOCRATES COMENIUS » - Collège Jules Ferry (Montluçon)
    LES ORIGINES DU PATRIMOINE SCIENTIFIQUE EUROPEEN
    Coordonnatrice du Projet : Melle BANKO Martine. Animateur du Projet : Mr GIRAUD Jean
    Auteur du document : Mr GIRAUD Jean. Créateur de la page Web : Mr OLLIER Jean Pierre

    12. _500_AD Index
    400 BC 350 BC) thymaridas ( 396 BC - 314 BC) Xenocrates
    http://www.snipurl.com/2x3a
    Mathematicians born before 500 AD
    Ahmes
    (800 BC - 740 BC) Baudhayana
    (750 BC - 690 BC) Manava
    (624 BC - 546 BC) Thales
    (600 BC - 540 BC) Apastamba
    (580 BC - 520 BC) Pythagoras
    (520 BC - 460 BC) Panini
    (499 BC - 428 BC) Anaxagoras
    (492 BC - 432 BC) Empedocles
    (490 BC - 430 BC) Zeno of Elea
    (490 BC - 420 BC) Oenopides (480 BC - 420 BC) Leucippus (480 BC - 411 BC) Antiphon (470 BC - 410 BC) Hippocrates (465 BC - 398 BC) Theodorus (460 BC - 400 BC) Hippias (460 BC - 370 BC) Democritus (450 BC - 390 BC) Bryson (428 BC - 350 BC) Archytas (428 BC - 347 BC) Plato (415 BC - 369 BC) Theaetetus (408 BC - 355 BC) Eudoxus (400 BC - 340 BC) Gan De (400 BC - 350 BC) Thymaridas (396 BC - 314 BC) Xenocrates (390 BC - 320 BC) Dinostratus (387 BC - 312 BC) Heraclides (384 BC - 322 BC) Aristotle (380 BC - 320 BC) Menaechmus (370 BC - 310 BC) Callippus (360 BC - 300 BC) Aristaeus (360 BC - 290 BC) Autolycus (350 BC - 290 BC) Eudemus (325 BC - 265 BC) Euclid (310 BC - 230 BC) Aristarchus (287 BC - 212 BC) Archimedes (280 BC - 210 BC) Nicomedes (280 BC - 206 BC) Chrysippus (280 BC - 220 BC) Conon (280 BC - 220 BC) Philon (276 BC - 197 BC) Eratosthenes (262 BC - 190 BC) Apollonius (250 BC - 190 BC) Dionysodorus (240 BC - 180 BC) Diocles (200 BC - 140 BC) Zenodorus (200 BC - 140 BC) Katyayana (190 BC - 120 BC) Hipparchus (190 BC - 120 BC) Hypsicles (180 BC - 120 BC) Perseus (160 BC - 90 BC) Theodosius (150 BC - 70 BC) Zeno of Sidon (135 BC - 51 BC) Posidonius (130 BC - 70 BC) Luoxia Hong ( 10 BC - 60 AD) Geminus (10 AD - 75) Heron (10 AD - 70)

    13. Matematikçiler
    thymaridas. Dogum m.ö 400, Yunanistan. Ölüm m.ö 350. thymaridas’inyasami hakkinda çok az sey bilinmektedir. Buna
    http://www.sanalmatematik.com/d/m102.html

    14. Introduction To Number Theory
    thymaridas of Paros was a number theorist who wrote about prime numbers. It was aid that thymaridas called prime number rectilinear because the only way you can look at it
    http://www.sienahts.edu/~myates/number.htm
    Introduction to Number Theory Mathematics in the past has influenced a large amount of our mathematics today. Number theory is the branch of math that is used and talked about more frequently. It is found in every part of math that you can think of from algebra all the way to calculus. The history of number theory goes back to as early as B.C. Number theory (better known as arithmetic theory) is in essence the study of numbers that deal with integers, irrational numbers, rational numbers, and real numbers. If it wasn’t for number theory, our math probably would not exist today. There were many key invents and people that help number theory be a main concern for people wanting to be involve with the study of number theory. History of Number Theory in Centuries Before the Christian era (BC) Theodorus of Cyrene Born 465 BC Died 398 BC Theodorus was one of the first people to deal with number theory. His main contribution to the number theory was his development with the irrational numbers. Theodorus proved that the square root of 2 is irrational without evening proving it. The usual proof for this is “which supposes that p q where p q is a rational in its lowest terms and derives a contradiction by showing that p and q are both even”. (

    15. Literatur Mathematik
    Geometrie Pythagoreische Arithmetik - Epanthem des thymaridas - Euklid und vollkommene Zahlen - geometrische Algebra
    http://ourworld.compuserve.com/homepages/KrausePlonka/seminar/ma_l_ma.htm
    Besondere Bücher zur Mathematik
    Zahlwort und Ziffer Das mathematische Denken der Antike Die Zeitgenössischen Denkmethoden Kurzweil durch Mathe ... Wege des exakten Denkens Becker, Oskar Das mathematische Denken der Antike Vandenhoeck Göttingen1957/66 5- Studienheft zur Altertumswissenschaft I: Vorgriechische Mathematik II: Griechische Mathematik ( Euklid, Archimedes, Appolonios )Beispiele : zu I: ägyptische Algebra - Babylonische Algebra zu II: Thaletische Geometrie - Pythagoreische Arithmetik - Epanthem des Thymaridas - Euklid und vollkommene Zahlen - geometrische Algebra der Pythagoreer - pythagoreischer Lehrsatz - Lunulae Hippocratis Delisches Problem ( Würfelverdopplung) - Winkeldrittlung -Kreisquadratur Kegelschnitte nach Pappos - Konchoide des Nikomedes -Siebeneck durch Archimedes Proportionenlehre des Eudoxos - Integrationsmethode des Archimedes - Trigonometrie : Satz des Ptolemaios Gleichungen des Diophant Bergmann Vertretungsstunden Mathematik Sek I Klett Stuttgart 1991 I : Aus Geometrie und Topologie - Flächenverwandlungen, Rund um Pythagoras , Netze, Platonische Körper II : Zahlentheorie - Teilbarkeit, Periodische Dezimalbrüche, Zahlen aus Figuren, III : Historisches - Antike Rechenkunst, Thales, Fibonacci-Zahlen, Goldbachsche Vermutung, Euler IV : Tüfteln und Knobeln - Umfüllaufgaben, Kryptogramme, Flächen in Punktgittern V : Angewandte Mathematik - Stellenwertsysteme, Pascalsches Dreieck, Buffonsches Nadelproblem VI : Merkwürdiges und Scherzhaftes - 100, Merkwürdige Zahlenfolgen, abessinisch Multiplizieren, 64 = 65?, 24 Negerküsse

    16. Artkaos.net
    thymaridas.php . this page thymaridas De Paros Vers 400 Â? vers 350
    http://www.artkaos.net/index.php?page=google&q=Zénon d'Elée

    17. LEC - Sommaire
    Translate this page érudition moderne, 321. M. FEDERSPIEL, Sur l’« épanthème de thymaridas» (Jamblique, In Nic., éd. Pistelli, p. 62, 18-68, 26), 341. M
    http://www.fundp.ac.be/~philo-ec/LECSOMM.HTM
    REVUE TRIMESTRIELLE
    DE RECHERCHE ET D’ENSEIGNEMENT Sommaire du volume 67 (1999) Sommaire du volume 66 (1998) Sommaire du volume 65 (1997)
    D. P ALEOTHODOROS M. F EDERSPIEL In Nic M. L AVENCY M. E. T ORREGO ni nisi Notes et discussions Ph. R ODRIGUEZ Revue des Revues Revue des Livres
    Sommaire du volume 67 (1999)
    A. B LANC M. C OURRENT De Architectura de Vitruve O. C URTY A. D EISSER , Dante et le dernier voyage d’Ulysse M. D UBUISSON M. F EDERSPIEL In Nic O. G ENGLER O. G ENGLER J. H ATEM , L’anticipation de l’abstrait. Lecture du Chef-d’œuvre inconnu de Balzac M. L AVENCY Y. L EHMANN , Temps humain et temps cosmique chez Varron P. M AGNO , L’horoscope d’Horace ( Odes , II, 17, 17-24) N. M A. M EURANT A. M ICHIELS D. P ALEOTHODOROS Ph. R ODRIGUEZ S. S METS , La traduction de Thyrsis par Antoine Cros P. S OMVILLE , Le poison de Britannicus M. E. T ORREGO ni nisi L. V AN D ER S TOCKT , Le temps et le tragique dans les Bacchantes d’Euripide Sommaire du volume 66 (1998)
    P. B ADOT et D. D E D ECKER P. B ONNECHERE spartiate. S. B YL M. C HASSIGNET P.-J. D

    18. À§´ëÇѼöÇÐÀÚ ¸ñ·Ï
    near Largs), Ayrshire, Scotland Thue, Axel Thue Born 19 Feb 1863 in Tönsberg,Norway Died 7 March 1922 in Oslo, Norway thymaridas, thymaridas Born about
    http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=T

    19. L'epantema Di Timarida
    thymaridas Questo problema potrebbe stare nelle ricreazioni pitagoriche.
    http://digilander.libero.it/basecinque/numeri/epantema.htm
    BASE Cinque Appunti di Matematica ricreativa
    BASE Cinque
    Collezione L'epantema di Timarida
    ovvero, la "florida sententia", o ancora "the bloom" di Thymaridas
    Questo problema potrebbe stare nelle ricreazioni pitagoriche Quanto pesano i ragazzi?
    Aldo, Baldo, Carlo, Diego e Franco pesano assieme 213 kg.
    Aldo e Baldo pesano assieme 78 kg
    Aldo e Carlo pesano assieme 84 kg
    Aldo e Diego pesano assieme 67 kg
    Aldo e Franco pesano assieme 89 kg Quanto pesa ciascuno di essi? Chiamo x, x1, x2, x3, x4 rispettivamente i pesi di Aldo, Baldo, Carlo, Diego e Franco. L' epantema di Timarida è una regola che mi permette di calcolare subito la soluzione del problema. Peso di Aldo = x = (78 + 84 + 67 + 89 - 213)/3 = 35 kg A questo punto è facilissimo calcolare i pesi degli altri ragazzi. Peso di Baldo = 78 - 35 = 43 kg Peso di Carlo = 84 - 35 = 49 kg Peso di Diego = 67 - 35 = 32 kg Peso di Franco = 89 - 35 = 54 kg In generale l'epantema di Timarida serve per risolvere i problemi che si esprimono con sistemi del tipo: x + x1 = a1
    x + x2 = a2
    x + x3 = a3 x + xn = an x + x1 + x2 + x3 + ... + xn = a

    20. Ancient Greek Number Theory And Prime Numbers
    thymaridas a Pythagorean a number theorist called a prime number rectilinear sinceit can only be represented onedimensionally, whereas non-prime numbers such
    http://www.mlahanas.de/Greeks/Primes.htm

    Greeks and Prime Numbers

    T
    Aristotle Metaphysica A 5. 985 b 23
    Pythagoras
    discovered the relation between harmony and numbers. The Pythagoreans saw the number one as the primordial unity from which all else is created. Two was the symbol for the female, three for the male and therefore five (two + three) symbolized marriage. The number four was symbolic of harmony, because two is even, so four (two times two) is "evenly even". Four symbolized the four elements out of which everything in the universe was made (earth, air, fire, and water). Ten that was the sum from one to four was a very special number. The ancient Greeks believed that all numbers had to be rational numbers. 2500 years ago Greeks discovered that if all the common prime numbers were removed from the top and bottom of the ratio then one of the two numbers had to be odd. This we can term reduced form . Obviously, if top and bottom were both even, then both could be divide by the number two and this could be eliminated from both. The Greeks then went on to show that for a right triangle with sides [1:1:square root of two] that the hypotenuse of the triangle, the square root of two, in reduced form could not have either top or bottom number odd. Consequently, it cannot be a rational number.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 56    1  | 2  | 3  | Next 20

    free hit counter