Geometry.Net - the online learning center
Home  - Scientists - Tartaglia Niccolo Fontana
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Tartaglia Niccolo Fontana:     more detail
  1. Italian Engineers: Guglielmo Marconi, Niccolò Fontana Tartaglia, Antonio Meucci, Federico Faggin, Tommaso Francini, Giotto Bizzarrini
  2. Ballistics Experts: Isaac Newton, Leonardo Da Vinci, Leonhard Euler, Galileo Galilei, Niccolò Fontana Tartaglia, Ernst Mach, Frederick Abel
  3. 16th-Century Mathematicians: Johannes Kepler, John Napier, Niccolò Fontana Tartaglia, Gerolamo Cardano, Luca Pacioli, Lodovico Ferrari
  4. 15th-Century Births: Niccolò Fontana Tartaglia, Pedro de Valdivia, William Caxton, Lambert Simnel, Veit Stoss, Caspar Schwenckfeld
  5. Italian Military Engineers: Leonardo Da Vinci, Niccolò Fontana Tartaglia, Vitruvius, Enea Bossi, Sr., Girolamo Maggi, Taccola
  6. 1557 Deaths: Niccolò Fontana Tartaglia, Anne of Cleves, Jacques Cartier, Mikael Agricola, William Cavendish, Albert Alcibiades
  7. Italian Mathematicians: Galileo Galilei, Maria Gaetana Agnesi, Fibonacci, Niccolò Fontana Tartaglia, Gerolamo Cardano, Joseph Louis Lagrange

41. Disputas Matemáticas En El Siglo XVI
Translate this page niccolo fontana (tartaglia) 1499-1557. niccolo fontana conocido comotartaglia, nació en Brescia República de Venecia , en 1499
http://es.geocities.com/clapellini/disputas_matematicas.htm
VOLVER A LA LECHUZA ILUSTRADA Fuente: Matemáticos Que Hicieron La Historia de Alejandro García Venturini Introducción:
Erase el siglo XVI, en la Italia renacentista, tres notable matemáticos conocidos como Del Ferro, Tartaglia y Cardano, que trabajaban arduamente en busca de encontrar un método práctico para resolver una ecuación matemática, conocida como de tercer grado. Desde la época de los babilonios, 2500 a.d.C.,cuando estos ya conocían la solución de las ecuaciones de segundo grado, (para aplicarlo a sus construcciones) y hasta esa fecha no hubo avances significativos con respecto a este tema. Unos cuántos años antes los famosos matemáticos medievales Fibonacci y Luca Pacioli, habían tratado someramente estos problemas, pero sólo resolviendo algunos casos particulares, e inclusive sin llegar a una demostración racional de tales soluciones. Sería Scipione del Ferro, hijo de un imprentero de Bolonia, el primero en estudiar con un método ortodoxo, la obtención de las raíces (soluciones) de estas funciones matemáticas. Más tarde otras grandes figuras continuarian con estos trabajos, pero sin antes, atravesar un dificil camino de encuentros violentos, dramáticos y deshonestos, por el afán de lograr la primacía en la concrención de sus búsqueda. A través de sus biografía se reflejará esta historia de tristes disputas, y que muestra también la pasión que dominaba a estos genios de los números, que muchas veces viviendo en un ámbito de miserias humanas y materiales , no se dejaban vencer por la adversidad, y siempre se esforzaban para llegar a conocer la verdad de estos dificultosos problemas.

42. Curios8
Translate this page el que está asociado · niccolo fontana más conocido como tartaglia, nació enBrescia en el año 1.499, y murió en Venecia el 13 de diciembre de 1.557.
http://www.xtec.es/~bfiguera/curioso8.html
EL MARAVILLOSO TRIÁNGULO DE TARTAGLIA Dentro de un ciclo de jornadas matemáticas de una Universidad catalana se daba una conferencia titulada "Las Matemáticas durante el Renacimiento", el ponente comenzó su exposición diciendo:
- “U; u, u; u, ...
*(en catalán u uno
De pronto uno de los asistentes exclama en voz suficientemente alta como para ser oído por la mesa:
Entonces el ponente, con mucha calma, retomó su conferencia:
- “Bien, como las iba diciendo, u; u u; u dos u; u tres tres u; ... algunos de ustedes ya se habrán dado cuenta que no se trata de un “tartajas” sino de Tartaglia, más concretamente del archiconocido triángulo de Tartaglia, atribuido también a Pascal o, en países asiáticos, a Yang Hui. Sin duda, se trata de una de las joyas de la matemática, datado durante el Renacimiento en Europa, con el que quería comenzar esta exposición ...”
Niccolo Fontana más conocido como Tartaglia, nació en Brescia en el año 1.499, y murió en Venecia el 13 de diciembre de 1.557. Era hijo de un humilde cartero.
Fue el primer matemático en idear un procedimiento general de resolución de las ecuaciones de tercer grado, manteniendo en secreto sus métodos.

43. Curios8
amb el que està associat · niccolo fontana més conegut com tartaglia, va néixera Brescia l any 1.499, i va morir a Venècia el 13 de desembre de 1.557.
http://www.xtec.es/~bfiguera/curios8.html
EL MERAVELLÒS TRIANGLE DE TARTAGLIA
- “U; u, u; u, ...
Niccolo Fontana
Blaise Pascal
Era fill d’un insigne magistrat i estudiós de problemes físics i matemàtics, va rebre la seva primera formació del seu pare. El 1631 es traslladen a París i freqüentaren el cercle d’intel·lectuals organitzat per Mersenne. Aviat es va distingir per les seves investigacions en geometria i física. Als 15 anys publicà "Assaig sobre les còniques".
Yang Hui
La tercera fila es forma a partir del i etc.
La quarta fila, per exemple: . La sisena Ara comencen els canvis: seria , etc.
Vegem-ho: , etc.
(a + b) n (a + b) = a + 2ab + b
(a + b) = a b + 3ab + b Generalitzant el desenvolupament del binomi: (a + b) n = k a n + k a n-1 b + k a n-2 b + k a n-3 b + ... + k n-1 ab n-1 + k n b n k n k = k n k = k n-1 = n Nombre de combinacions possibles d’un conjunt de n elements agafats en grups de m elements.
n! es llegeix "n factorial" i es calcula: n m C = 1 ,C

44. List Of People By Name: Ta-Tb
Pole; tartaglia, niccolo fontana, (15001557), Italian mathematician;Tartikoff, Brandon, (1949-1997), television producer. Tartini
http://www.fact-index.com/l/li/list_of_people_by_name__ta_tb.html
Main Page See live article Alphabetical index
List of people by name: Ta-Tb
List of people by name A B C ... S T U V W X ... Z Ta-Tb Tc-Td Te Tf-Th Ti ... Tz
Ta

45. TutorGig.com Encyclopedia Niccolo Fontana Tartaglia
TutorGig.com Encyclopedia niccolo fontana tartaglia. TutorGig.comhas the niccolo fontana tartaglia. niccolo fontana tartaglia (1500
http://www.tutorgig.com/encyclopedia/getdefn.jsp?keywords=Tartaglia's_formula

46. Complex Analysis
Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartaglia the stammerer - because of a speaking disorder
http://math.fullerton.edu/mathews/c2000/c01/Links/c01_lnk_3.html
Section 1.1 The Origin of Complex Numbers Complex analysis can roughly be thought of as that subject which applies the ideas of calculus to the imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about them in high school with introductory remarks from their teachers along the following lines: "We can't take the square root of a negative number. But, let's pretend we can - and since these numbers are really imaginary, it will be convenient notationally to set ." Rules are then learned for doing arithmetic with these numbers. The rules make sense. If , it stands to reason that . On the other hand, it is not uncommon for students to wonder all along whether they are really doing magic rather than mathematics.
If you ever felt that way, congratulate yourself! You're in the company of some of the great mathematicians from the sixteenth through the nineteenth centuries. They too were perplexed with the notion of roots of negative numbers. The purpose of this section is to highlight some of the episodes in what turns out to be va very colorful history of how imaginary numbers were introduced, investigated, avoided, mocked, and eventually accepted by the mathematical community. We intend to show you that, contrary to popular belief, there is really nothing imaginary about "imaginary numbers" at all. In a metaphysical sense, they are just as real as are "real numbers."
In 1545 the Italian mathematician Girolamo Cardano published "Ars Magna" (The Great Art), a 40 chapter masterpiece in which he gave for the first time an algebraic solution to the

47. Complex Analysis
Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartagliathe stammerer-because of a speaking disorder
http://math.fullerton.edu/mathews/c2002/ca0101.html
COMPLEX ANALYSIS: Mathematica 4.1 Notebooks
(c) John H. Mathews, and
... COMPLEX NUMBERS Section 1.1 The Origin of Complex Numbers Complex analysis can roughly be thought of as that subject which applies the ideas of calculus to imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about them in high school with introductory remarks from their teachers along the following lines: "We can't take the square root of a negative number. But, let's pretend we can-and since these numbers are really imaginary , it will be convenient notationally to set ." Rules are then learned for doing arithmetic with these numbers. The rules make sense. If , it stands to reason that . On the other hand, it is not uncommon for students to wonder all along whether they are really doing magic rather than mathematics.
If you ever felt that way, congratulate yourself! You're in the company of some of the great mathematicians from the sixteenth through the nineteenth centuries. They, too, were perplexed with the notion of roots of negative numbers. The purpose of this section is to highlight some of the episodes in what turns out to be a very colorful history of how imaginary numbers were introduced, investigated, avoided, mocked, and-eventually-accepted by the mathematical community. We intend to show you that, contrary to popular belief, there is really nothing imaginary about "imaginary numbers'' at all. In a metaphysical sense, they are just as real as are "real numbers.''

48. Epsilones: Retratos
(1887-1920); Russell, Bertrand (1872-1970); tartaglia, niccolo fontana (ca.
http://www.epsilones.com/paginas/i-retratos.html
Retratos INICIO EPSILONES Saludo BESTIARIO Mapa del sitio ...
  • Pierre de Fermat NOVEDAD
  • Fibonacci (Leonardo de Pisa) (ca. 1180 - 1250)
  • Gauss, Carl Friedrich
  • Leonardo da Vinci
  • Moebius, A. F.
  • Neumann, John von ...
  • Pacioli, Luca
  • (ca. 580 a.n.e.-ca. 500)
  • Ramanujan, Srinivara
  • Russell, Bertrand
  • Tartaglia, Niccolo Fontana (ca. 1500-1557)
  • Turing, Alan
  • (ca. 495 a.n.e.-ca. 430)
    Pierre de Fermat (1601-1665) Newton Descartes la Pascal probabilidad Fue uno de los primeros en establecer principios variacionales (dijo de la naturaleza que “siempre sigue el camino más corto"), gracias a los cuales obtuvo las leyes de la reflexión y la refracción. Pierre de Fermat (62 Kb). Bertrand Russell (1872-1970) Entre sus aportaciones a la historia del pensamiento destacan:
  • Desarrollo del logicismo , programa propuesto por Frege
  • Paradoja de Russell.
  • Fenomenalismo Dos fueron los grandes objetivos de Russell durante su vida: luchar contra la estupidez y por la felicidad.
  • 49. HighBeam Research: ELibrary Search: Results
    be seen in churches in Ferrara, including the church of S niccolo, for which fontana,Niccol ograve; Italian mathematician, nicknamed tartaglia.
    http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_dictiona

    50. Ballistics
    O Connor, John J and Robinson, Edmund F. Nicolo fontana tartaglia. http//www Westfall,Richard S. tartaglia Tartaleo, Tartaia, niccolo. http//es
    http://tomacorp.com/ballistics/ballistics.html
    Ballistics Spud Gun A spud gun is a form of potato shooter that is made of ABS pipe. Do not use PVC pipe! . Do not use DWV pipe (drain, waste, vent) or cellulose pipe marked NOT FOR PRESSURE. This means DO NOT USE THEM OR PRESSURIZE THEM AT ALL. These pipes can tolerate no pressures and will explode if pressurized, causing great harm or death. A friend of a guy named John Rich made the designs of the spud gun. Bob Simon put up a website called " Backyard Ballistics " in 1995 in the city of Houston, Texas. He probably did this for the purposes of fun. This is just the sort of thing that you should expect from a Texan! Note: I am about to tell you how to make one of these things. Do not use this for any purpose other than fun. Do not point this at anyone or anything. Do not even build one. You could become seriously injured or killed!) How to make a spud gun Materials
    • 1 10 foot 3 inch diameter schedule 40 ABS pipe 110 foot 2 inch diameter schedule 40 ABS pipe 1 3 to 2 inch reducing bushing 1 3 inch coupling 1 3 inch threaded (one side) coupling 1 3 inch threaded end-cap One can ABS solvent-weld pipe glue.

    51. Histoire34
    Translate this page tartaglia. (Italien,1499-1557). niccolo fontana ou tartaglia, filsd’un humble postier est né à Brescia en 1499. Il fut presque
    http://maurice.bichaoui.free.fr/Histoire34.htm
    T artaglia
    (Italien,1499-1557)
    Niccolo Fontana ou Tartaglia, fils d’un humble postier est né à Brescia en Il fut presque tué à son adolescence quand en , les Français ont capturé sa ville natale et lui ont donné un coup d’épée. Les troupes françaises étaient menées par le terrible Gaston de Foix, surnommé "Foudre d'Italie". Le jeune homme de 13 ans avait reçu un horrible coup de sabre à la face et il était laissé pour mort. Les soins de sa mère firent que le jeune a survécu mais plus tard, Niccolo portait toujours la barbe pour camoufler ses cicatrices et il parlait avec difficultés d’où son surnom Tartaglia ou le bègue. Le père de Niccolo Fontana avait engagé un professeur pour instruire son fils de six ans. Après la mort de son père, celui-ci arrêta les cours, alors qu'il ne connaissait qu'un tiers de l'alphabet (de A à I). Il poursuivit seul son apprentissage. Tartaglia était un autodidacte en mathématiques mais avait d'extraordinaires possibilités ; il était capable de gagner sa vie en enseignant à Vérone et Venise. En temps que simple professeur de mathématiques à Venise, Tartaglia a acquis peu à peu une réputation de futur mathématicien en participant à de nombreux débats.

    52. Matematica - Articoli - Invito A ...
    Translate this page competizione. niccolo fontana tartaglia. Ad esempio Alice e Bob hannolitigato e si dividono tutti i beni acquisiti in comune. Per
    http://matematica.uni-bocconi.it/betti/crittografia.htm

    Renato Betti

    LA CRITTOGRAFIA
    di Renato Betti I PROBLEMI
    Niccolo Fontana Tartaglia
    chiave che serva a cifrare Crittografia a chiave pubblica
    Prima che una disciplina scientifica, la Crittografia era una pratica, un insieme di regole, di metodi, di strumenti. Era diventata quasi un'arte: l'arte di scambiarsi i messaggi senza farne capire il reale contenuto, anche se venivano intercettati. Una disciplina dallo statuto ambiguo, al limite della magia e dell'esoterismo. In questo contesto, Alice e Bob non sono ancora nati. Si ha a che fare con problemi di spionaggio, di nemici desiderosi di venire a conoscenza delle informazioni che scambiamo con i nostri alleati, per servirsene a nostro danno.
    privacy . E la Matematica - in particolare la Teoria dei numeri - ha fatto cambiare natura alla Crittografia, liberandola dalla sua aura di mistero e trasformandola da un'arte in una scienza.
    Alan Turing cifrare o decifrare un messaggio , ma anche quello di "certificarlo", vale a dire: (2)

    53. 4Reference || Niccolo Fontana Tartaglia
    Read about niccolo fontana tartaglia and thousands of other subjectsat 4Reference.net. niccolo fontana tartaglia. niccolo fontana
    http://www.4reference.net/encyclopedias/wikipedia/Niccolo_Fontana_Tartaglia.html
    Front Page Encyclopedias Dictionaries Almanacs ... Quotes Niccolo Fontana Tartaglia Niccolo Fontana Tartaglia or December 13 ) was a mathematician, an engineer (designing fortifications), surveyor (topography w/r best means of defense or offense) and bookkeeper from the then Republic of Venice (now Italy ). He published many books, including the first Italian translations of Archimedes and Euclid , and an acclaimed compilation of mathematics. Tartaglia was the first to apply mathematics to the investigation of the paths of cannonballs; his work was later validated by Galileo 's studies on falling bodies. There is a story that Tartaglia learned only half the alphabet from a private tutor before funds ran out, and he had to learn the rest for himself. Be that as it may, he was essentially self-taught. He and his contermporaries, working outside the academies, were responsible for the spread of classic works in modern languages among the educated middle class. His work on Euclid in was especially significant. For two centuries Euclid had been taught from two Latin translations taken from an Arabic source; these contained errors in Book V, the Eudoxian theory of proportion, which rendered it unusable. Tartaglia's edition was based on Zamberti's Latin translation of an uncorrupted Greek text, and rendered Book V correctly. He also wrote the first modern and useful commentary on the theory. Later, the theory was an essential tool for Galileo, just as it had been for

    54. December 13 - Today In Science History
    His proper name was niccolo fontana although he is always known by his nickname,tartaglia, which means the stammerer. When the French sacked Brescia in 1512
    http://www.todayinsci.com/12/12_13.htm
    DECEMBER 13 - BIRTHS Philip W. Anderson
    (source)
    Born 13 Dec 1923
    Philip Warren Anderson is an American physicist who (with John H. Van Vleck and Sir Nevill F. Mott) received the 1977 Nobel Prize for Physics for his research on semiconductors, superconductivity, and magnetism. He made contributions to the study of solid-state physics, and research on molecular interactions has been facilitated by his work on the spectroscopy of gases. He conceived a model (known as the Anderson model) to describe what happens when an impurity atom is present in a metal. He also investigated magnetism and superconductivity, and his work is of fundamental importance for modern solid-state electronics, making possible the development of inexpensive electronic switching and memory devices in computers. John Henry Patterson
    (source)
    Born 13 Dec 1844; died 7 May 1922.
    American manufacturer who founded NCR (National Cash Register Co.) and helped popularize the modern cash register by means of aggressive and innovative sales techniques. In the 1870s, when he and his brother Frank established a successful business selling coal and miner's supplies, unrecorded sales were a problem. After reading a description of the cash register designed by James Ritty and sold by the National Manufacturing Company in Dayton, John ordered two, sight unseen. In six months they reduced his debt from $16,000 to $3,000 and the books showed a profit of $5,000. These modern machines had solved the old problems of disorganization and dishonesty. Patterson "was so impressed that he bought the company."

    55. Chronological Indexes (”N‘㏇)
    1401 · (Scipione del Ferro 1465-1526) (niccolo fontana tartaglia 1499-1557)(Nicolo fontana)
    http://www5f.biglobe.ne.jp/~mathlife/html/mathematicians.htm
    RETURN Chronological indexes BC
    ƒ^ƒŒ[ƒX
    @(Thales@BC624?-547?)
    ƒsƒ^ƒSƒ‰ƒX
    @(Pythagoras@BC569?-475?)
    ƒ[ƒmƒ“
    @(Zeno of Elea@BC490?-425?)
    ƒvƒ‰ƒgƒ“
    @(Platon@BC428?-347?)
    ƒqƒpƒeƒBƒA
    i—«j@(Hypatia of Alexandria@BC370?-415?)
    ƒ†[ƒNƒŠƒbƒh
    iƒGƒEƒNƒŒƒCƒfƒXj@(Euclid@BC330?-275?)(Eukleides)
    ƒjƒRƒƒfƒX
    @(Nicomedes@BC300?-240?)
    ƒAƒ‹ƒLƒƒfƒX
    @(Arkhimedes@BC287?-212)
    @(Apollonios@BC262?-200?)
    ƒfƒBƒIƒtƒ@ƒ“ƒgƒX
    @(Diophantos@246?-330?) @(Pappus of Alexandria@290?-350?) ƒoƒXƒJƒ‰ @(Bhaskara@1114-1185) @(Leonardo Fibonacci@1170?-1250?) ƒAƒ‹EƒJ[ƒV[ @(Ghiyath al-Din Jamshid Mas'ud al-Kashi@1380?-1429) ƒfƒ‹EƒtƒFƒbƒ @(Scipione del Ferro@1465-1526) ƒ^ƒ‹ƒ^[ƒŠƒA @(Niccolo Fontana Tartaglia@1499-1557)(Nicolo Fontana) ƒJƒ‹ƒ_[ƒm @(Girolamo Cardano@1501-1576) ƒtƒFƒ‰[ƒŠ @(Lodovico Ferrari@1522-1565) ƒ”ƒBƒGƒg @(Francois Viete@1540-1603) ƒXƒeƒrƒ“ @(Simon Stevin@1548-1620) ƒl[ƒsƒA @(John Napier@1550-1617) ƒPƒvƒ‰[ @(Johannes Kepler@1571-1630) @(Thomas Hobbes@1588-1679) ƒWƒ‰[ƒ‹EƒfƒUƒ‹ƒO @(Girard Desargues@1591-1661) ƒfƒJƒ‹ƒg @(Rene Descartes@1596-1650) ‹g“cŒõ—R @(Yoshida Mitsuyoshi@1598-1672) @(Pierre de Fermat@1601-1665) ƒEƒHƒŠƒX @(John Wallis@1616-1703) ƒpƒXƒJƒ‹ @(Blaise Pascal@1623-1662) ƒAƒCƒUƒbƒNEƒoƒ[ @(Isaac Barrow@1630-1677) ŠÖF˜a @(Seki Takakazu@1642?-1708)

    56. Japanese Syllabaries (ŒÜ\‰¹‡)
    1782) (Jean Le Rond d Alambert 1717?1783) (niccolo fontana tartaglia 14991557)(Nicolo fontana) (Thales
    http://www5f.biglobe.ne.jp/~mathlife/html/jpsyllabary.htm
    RETURN Japanese syllabaries ƒA
    ƒA[ƒxƒ‹
    @(Niels Henrik Abel@1802-1829)
    ƒAƒCƒUƒbƒNEƒoƒ[
    @(Isaac Barrow@1630-1677)
    ƒAƒCƒ[ƒ“ƒVƒ…ƒ^ƒCƒ“
    @(Ferdinand Gotthold Max Eisenstein@1823-1852)
    ƒAƒCƒ“ƒVƒ…ƒ^ƒCƒ“
    @(Albert Einstein@1879-1955)
    @(Apollonios@BC262?-200?)
    ƒAƒ‹EƒJ[ƒV[
    @(Ghiyath al-Din Jamshid Mas'ud al-Kashi@1380?-1429)
    ƒAƒ‹ƒKƒ“
    @(Jean Robert Argand@1768-1822)
    ƒAƒ‹ƒLƒƒfƒX
    @(Arkhimedes@BC287?-212)
    ƒAƒ“ƒhƒŒEƒ”ƒFƒCƒ†
    @(Andre Weil@1906-1998)
    ƒC ƒE ƒEƒBƒi[ @(Norbert Wiener@1894-1964) ƒEƒFƒAƒŠƒ“ƒO @(Edward Waring@1736-1798) ƒEƒHƒŠƒX @(John Wallis@1616-1703) ƒG ƒGƒ‹ƒ~[ƒg @(Charles Hermite@1822-1901) ƒI ƒIƒCƒ‰[ @(Leonhard Euler@1707`1783) ƒJ ƒKƒEƒX @(Johann Karl Friedrich Gauss@1777-1855) ƒJƒ‹ƒ_[ƒm @(Girolamo Cardano@1501-1576) ƒKƒƒ @(Evariste Galois@1811-1832) ƒJƒ“ƒg[ƒ‹ @(Georg Ferdinand Ludwig Philipp Cantor@1845-1918) ƒL ƒN ƒNƒ‰ƒCƒ“ @(Felix Christian Klein@1849-1925) ƒNƒƒlƒbƒJ[ @(Leopold Kronecker@1823-1891) ƒP ƒPƒCƒŠ[ @(Arthur Cayley@1821-1895) ƒQ[ƒfƒ‹ @(Kurt Godel@1906-1978) ƒPƒvƒ‰[ @(Johannes Kepler@1571-1630) ƒR ƒR[ƒVƒG @(Augustin Louis Cauchy@1789-1857) ƒT ƒV ƒWƒ‡ƒ‹ƒ_ƒ“ @(Marie Ennemond Camille Jordan@1838-1922) ƒWƒ‰[ƒ‹EƒfƒUƒ‹ƒO @(Girard Desargues@1591-1661) ƒVƒ‹ƒ”ƒFƒXƒ^[ @(James Joseph Sylvester@1814-1897) ƒX ƒXƒeƒrƒ“ @(Simon Stevin@1548-1620) ƒZ ŠÖF˜a @(Seki Takakazu@1642?-1708)

    57. A Look To The Past
    niccolo fontana (tartaglia) (15001557) claimed to be able to solve cubic equationsof the form x3+ mx2 = n. However, he apparently did not know how to solve
    http://ued.uniandes.edu.co/servidor/em/recinf/tg18/Vizmanos/Vizmanos-2.html
    Will elementary algebra disappear with the use of new graphing calculators?.
    A look to the past
    What do we understand elementary algebra to be? Elementary algebra is the language with which we communicate the majority of mathematics. Thanks to algebra we can work with concepts at an abstract level and then apply them. Elementary algebra begins as a generalization of arithmetic and then focuses on its own structure and greater logical coherence. From there comes the importance of the various uses of algebraic symbols. When we write A + B, we can be indicating the sum of two natural numbers, the sum of two algebraic expressions, or even the sum of two matrices. Thus there is, at first, representations and symbolism, and later the development of algorithms and procedures to work formally with algebraic expressions. But what we today understand to be algebra has been the fruit of the efforts of many generations that have been contributing their grains of sand in constructing this magnificent building. It seems that the Egyptians already knew methods for solving first degree equations. In the

    58. Bloomsbury.com - Research Centre
    A method of solving cubics (equations of the form ax 3 + bx 2 + cx + d = 0) wasdiscovered (probably rediscovered) by tartaglia (niccolo, fontana; (1500?1557
    http://www.bloomsbury.com/ARC/detail.asp?entryid=102120&bid=2

    59. Mathematical Applications
    Cardano’s Solution. Girolamo Cardano. niccolo fontana tartaglia. Historicalmethods of computation (slide rule, Napier’s rods, abacus, etc.). The Abacus.
    http://www.wncc.net/mathcenter/MA-WEBSITE.htm
    Mathematical Applications MATH-117 This course is for students who do not intend to take trigonometry and calculus. It is intended to satisfy the general university competency requirement in mathematics. Topics may include by are not limited to: problem solving strategies, logic, consumer mathematics, probability and statistics, geometry, and mathematics and art. This course does satisfy the mathematics requirement of the Associate of Arts or Associate of Science degree. The student will be required to complete a mathematical research paper/project This paper must be a college level paper , at least 4 to 5 pages in length. It must be documented and referenced with at least 3 sources (more than half of the sources must be non-Internet sources). You will be required to give a 10 - 15 minute presentation on this research Following is a list of possible topics for the paper/project. Include are some interesting math websites which can help you decide which topic is of interest to you. General Sites – these sites have many topics The History of Mathematics – University of South Australia Ask Dr. Math

    60. életrajzok: T
    1986). (Akadémiai kislexikon). tartaglia, niccolo fontana (1500?—1557.december 13.) velencei számolómester. A harmadfokú
    http://www.iif.hu/~visontay/ponticulus/eletrajzok/t.html
    rovatok j¡t©k arch­vum jegyzetek mutat³k kitekintő v©lem©nyek inform¡ci³k
    ©letrajzok magyar¡zatok forr¡sok
    TARKOVSZKIJ, Andrej Arszenyevics (1932—1986): szovjet—orosz filmrendező. Filozofikus, jelk©pekben ©s absztrakci³kban megfogalmazott dr¡mai alkot¡saiban a l©t ©rtelme, korunk ember©nek dilemm¡i foglalkoztatt¡k. 1984-től Nyugat-Eur³p¡ban ©lt. Főbb művei: Iv¡n gyermekkora Andrej Rubljov Solaris T¼k¶r Stalker Nosztalgia ldozathozatal (Akad©miai kislexikon) TARTAGLIA, Niccolo Fontana (1500?—1557. december 13.): velencei sz¡mol³mester. A harmadfokº egyenletek megold¡si elj¡r¡s¡nak egyik felfedezője. Alulmaradt a CARDANO val folytatott elsőbbs©gi vit¡ban. TAYLOR, Brook (1685. augusztus 19.—1731. december 29.): angol matematikus. Egy ideig az akad©mia (Royal Society) titk¡ra.
    1715-ben publik¡lta a nev©t meg¶r¶k­tő sorbafejt©si elj¡r¡st. A Taylor-sor jelentős©g©t EULER ©s LAGRANGE ismert©k fel. TELLER Ede (Edward Teller) (1908— ): magyar sz¼let©sű amerikai fizikus.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 85    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter