Home - Scientists - Tartaglia Niccolo Fontana |
Page 3 41-60 of 85 Back | 1 | 2 | 3 | 4 | 5 | Next 20 |
41. Disputas Matemáticas En El Siglo XVI Translate this page niccolo fontana (tartaglia) 1499-1557. niccolo fontana conocido comotartaglia, nació en Brescia República de Venecia , en 1499 http://es.geocities.com/clapellini/disputas_matematicas.htm | |
|
42. Curios8 Translate this page el que está asociado · niccolo fontana más conocido como tartaglia, nació enBrescia en el año 1.499, y murió en Venecia el 13 de diciembre de 1.557. http://www.xtec.es/~bfiguera/curioso8.html | |
|
43. Curios8 amb el que està associat · niccolo fontana més conegut com tartaglia, va néixera Brescia l any 1.499, i va morir a Venècia el 13 de desembre de 1.557. http://www.xtec.es/~bfiguera/curios8.html | |
|
44. List Of People By Name: Ta-Tb Pole; tartaglia, niccolo fontana, (15001557), Italian mathematician;Tartikoff, Brandon, (1949-1997), television producer. Tartini http://www.fact-index.com/l/li/list_of_people_by_name__ta_tb.html | |
|
45. TutorGig.com Encyclopedia Niccolo Fontana Tartaglia TutorGig.com Encyclopedia niccolo fontana tartaglia. TutorGig.comhas the niccolo fontana tartaglia. niccolo fontana tartaglia (1500 http://www.tutorgig.com/encyclopedia/getdefn.jsp?keywords=Tartaglia's_formula |
46. Complex Analysis Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartaglia the stammerer - because of a speaking disorder http://math.fullerton.edu/mathews/c2000/c01/Links/c01_lnk_3.html | |
|
47. Complex Analysis Its solution had been communicated to him by niccolo fontana (who, unfortunately,came to be known as tartagliathe stammerer-because of a speaking disorder http://math.fullerton.edu/mathews/c2002/ca0101.html | |
|
48. Epsilones: Retratos (1887-1920); Russell, Bertrand (1872-1970); tartaglia, niccolo fontana (ca. http://www.epsilones.com/paginas/i-retratos.html | |
|
49. HighBeam Research: ELibrary Search: Results be seen in churches in Ferrara, including the church of S niccolo, for which fontana,Niccol ograve; Italian mathematician, nicknamed tartaglia. http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_dictiona |
50. Ballistics O Connor, John J and Robinson, Edmund F. Nicolo fontana tartaglia. http//www Westfall,Richard S. tartaglia Tartaleo, Tartaia, niccolo. http//es http://tomacorp.com/ballistics/ballistics.html | |
|
51. Histoire34 Translate this page tartaglia. (Italien,1499-1557). niccolo fontana ou tartaglia, filsdun humble postier est né à Brescia en 1499. Il fut presque http://maurice.bichaoui.free.fr/Histoire34.htm | |
|
52. Matematica - Articoli - Invito A ... Translate this page competizione. niccolo fontana tartaglia. Ad esempio Alice e Bob hannolitigato e si dividono tutti i beni acquisiti in comune. Per http://matematica.uni-bocconi.it/betti/crittografia.htm | |
|
53. 4Reference || Niccolo Fontana Tartaglia Read about niccolo fontana tartaglia and thousands of other subjectsat 4Reference.net. niccolo fontana tartaglia. niccolo fontana http://www.4reference.net/encyclopedias/wikipedia/Niccolo_Fontana_Tartaglia.html | |
|
54. December 13 - Today In Science History His proper name was niccolo fontana although he is always known by his nickname,tartaglia, which means the stammerer. When the French sacked Brescia in 1512 http://www.todayinsci.com/12/12_13.htm | |
|
55. Chronological Indexes (Nã) 1401 · (Scipione del Ferro 1465-1526) (niccolo fontana tartaglia 1499-1557)(Nicolo fontana) http://www5f.biglobe.ne.jp/~mathlife/html/mathematicians.htm | |
|
56. Japanese Syllabaries (Ü\¹) 1782) (Jean Le Rond d Alambert 1717?1783) (niccolo fontana tartaglia 14991557)(Nicolo fontana) (Thales http://www5f.biglobe.ne.jp/~mathlife/html/jpsyllabary.htm | |
|
57. A Look To The Past niccolo fontana (tartaglia) (15001557) claimed to be able to solve cubic equationsof the form x3+ mx2 = n. However, he apparently did not know how to solve http://ued.uniandes.edu.co/servidor/em/recinf/tg18/Vizmanos/Vizmanos-2.html | |
|
58. Bloomsbury.com - Research Centre A method of solving cubics (equations of the form ax 3 + bx 2 + cx + d = 0) wasdiscovered (probably rediscovered) by tartaglia (niccolo, fontana; (1500?1557 http://www.bloomsbury.com/ARC/detail.asp?entryid=102120&bid=2 |
59. Mathematical Applications Cardanos Solution. Girolamo Cardano. niccolo fontana tartaglia. Historicalmethods of computation (slide rule, Napiers rods, abacus, etc.). The Abacus. http://www.wncc.net/mathcenter/MA-WEBSITE.htm | |
|
60. életrajzok: T 1986). (Akadémiai kislexikon). tartaglia, niccolo fontana (1500?1557.december 13.) velencei számolómester. A harmadfokú http://www.iif.hu/~visontay/ponticulus/eletrajzok/t.html | |
|
Page 3 41-60 of 85 Back | 1 | 2 | 3 | 4 | 5 | Next 20 |