Geometry.Net - the online learning center
Home  - Scientists - Sylow Ludwig
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-86 of 86    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Sylow Ludwig:     more detail
  1. Mathématicien Norvégien: Niels Henrik Abel, Sophus Lie, Atle Selberg, Thoralf Skolem, Ludwig Sylow, Kristen Nygaard, Axel Thue, Viggo Brun (French Edition)

81. Kommentiertes Vorlesungsverzeichnis
Fortsetzung der Gruppentheorie sylow-Theorie; Fortsetzung der
http://www.mathematik.uni-muenchen.de/~vvadmin/vv.html
Kommentiertes Vorlesungsverzeichnis
Sommersemester 2004
Studienberatung:
Herr Dr. B. Hanke, Di 14-15, Zi. 306, Nebenst. 4442
Fachdidaktik:
Frau Dr. G. Studeny, Mo 11-13, Zi. 207, Nebenst. 4634
Master-Studiengang:
Herr Dr. S. Wugalter, nach Vereinbarung, Zi. 405, Nebenst. 4405
Diplomstudiengang
und den Masterstudiengang
  • Vorlesungen Seminare Kolloquien und Sonderveranstaltungen ... Fachdidaktik und Didaktik der Mathematik
  • Vorlesungen:
    AN = Analysis (Vordiplom)
    AG = Algebraische Grundstrukturen (Vordiplom)
    PM = Praktische Mathematik (Vordiplom)
    B. Leeb
    • Zeit und Ort: Inhalt: Vorkenntnisse: Schein: Literatur:
      Zeit und Ort: Inhalt: Schein: Literatur:
    Osswald
    • Zeit und Ort: Inhalt: Vorkenntnisse: Schein: Literatur: Zeit und Ort: Inhalt: Vorkenntnisse: Schein: Literatur:
    Richert
    • Zeit und Ort:
    P. Schuster
    • Zeit und Ort: Inhalt: zugeschnitten. Schein: Literatur: Weitere Literatur wird im Laufe der Vorlesung bekanntgegeben.
    Pruscha

    82. Ma^itrise De Mathématiques Pures
    d un groupe abélien fini; Premier théorème de sylow.
    http://www.mmas.univ-metz.fr/~pasquale/maitriseweb.html
    MAÎTRISE DE MATHEMATIQUES PURES
    Ile du Saulcy
    F - 57045 Metz Cedex 01
    Responsable : Jean Ludwig
  • Objectifs de la formation Organisation de la formation Contrôle des connaissances ...
  • Calendrier et emploi-du-temps 2003/2004
  • OBJECTIFS DE LA FORMATION
    ORGANISATION DE LA FORMATION
    Semestre / UE Coeff.
    UE Contenu des enseignements CM TD TP
    totale D E D E D E 1er semestre
    espaces fonctionnels
    Total 1er semestre Analyse fonctionnelle
    - T. E. R (ou stage) Total
    D E = nombre de groupes
    EQUIPMENTS SPECIFIQUES OU COMMUNS
    CONTROLE DES CONNAISSANCES
    tableau
    COURS 2003/2004
    RESUMES DES COURS
  • Notions topologiques fondamentales
  • Bases-sub-bases
  • Fonctions continues
  • Topologies finales et initiales
  • Espace produits, espaces quotients
  • Espaces compacts
  • Les espaces T j , j=1,2,3,4
  • Structure des e.v.t.l.c
  • 83. News

    http://home.gelsen-net.de/ppose/mathe_aldi2_ss2002.html
    Stand : 24.06.2002
    KEINE PANIK : der Text wird kompletiert!
    Achtung, gegenüber der Vorlesung sind die Unterpunkte (1,2,...) durch (i,ii,...) ersetzt worden!
    news:
    Vorlesungen:
    - Paragraphen: III.5.1-
    Die angeführten Mathematiker:
    Inhalt:
    (Ü.1) Zu den Übungsaufgaben
    Kap. III Symmetrische Gruppen
    (5.1)(a-b) Notation (5.1)(b) Zykel; Transpositionen (5.2)(1-4) Bemn (5.2)(1) disjunkt (5.2)(2) paarweise disjunkt (5.2)(3) Typ; Partition (5.2)(4) Rechnen mit Zykelnotation; Multiplikation (5.3) Satz; Bsp (5.4) Cor (5.5) Satz; Bsp; Standgruppe; Signum (oder Vorzeichen) (5.6) Satz; alternierende Gruppe (5.7) Cor; Normalteiler vom Index (5.8) Cor; Bew; (5.9) die S3; 6 Konjugationsklassen; Klassengleichung (5.10) die Gruppe S4; 24 Konjugationsklassen (5.10) V4, die KLEINsche Vierergruppe - Paragraphen: III.5.11- Die angeführten Mathematiker: Inhalt: (5.11) die Gruppe A4 (5.12) Lemma; Bew; Bem (5.13) Lemma; Erinnerung; Bew (5.14) zurück zu A4; Folgerungen (5.15) die Gruppe S5 (5.16) die Gruppe S6 (5.17) Def; einfach

    84. (Niels Henrik Abel, 1802 - 1829, ?)
    The summary for this Japanese page contains characters that cannot be correctly displayed in this language/character set.
    http://www.sci.hyogo-u.ac.jp/matsuyam/dic/mame_content.htm
    $B%"! <(B)
    • <$N?t3X ZL@$9$k(B.
    • $B#4 <0$OBe?tE*$K2r$1$k(B.
    • $B#5 <0(B x -x-1=0 $B$OBe?tE*$K2r$1$J$$(B.
    • $B%"! $B$3$A$i(B $B$X(B.

    $B%(%8%W%HJ,?t(B
    • 0$B$H(B1$B$N4V$NJ,?t$r(B, $BJ,Jl$,8_$$$K0[$J$kC10LJ,?t$NOB$H$7$F(B $BI=$7$?$b$N$G$"$k(B.
    • $BNc$($P(B 2/3=1/2+1/6 $B$O%(%8%W%HJ,?tI= <($G$"$k(B.
    • $B:#$+$iI4?t==G/A0$K%(%8%W%H$N%F! <%Y$GH/8+$5$l(B, $B%9%3%C%H%i%s%I$N%(%8%W%H3X $B!V(Bn $B$,(B4$B$h$jBg$-$$4q?t$N$H$-J,?t(B 4/n $B$O9b!9(B3$B8D$NC10LJ,?t$K$h$k%(%8%W%HJ,?tI=

    $B:GBg8xLs?t(B
    • $B:GBg8xLs?t$H$O#2$D$N@0?t$N8xLs?t$NCf$G(B $B:GBg$N@0?t$N$3$H$G$"$k(B.
    • $B#3$D0J>e$N@0?t$K$D$$$F$bF1MM$K:GBg8xLs?t$,Dj5A$5$l$k(B.
    • GCD (Greatest Common Divisor) $B$H8F$V$3$H$,$"$k(B.
    • $B:GBg8xLs?t$r5a$a$k$K$O(B $B%f! $B$,8zN(E*$G$"$k(B.

    $B%7%m! <(B)
    $B%P! <%s%5%$%I(B (William Burnside, 1852$B!A(B1927, $B%$%.%j%9(B)
    • $BM-8B72O@$NEZBf$rC[$$$?%Q%$%*%K%"$G$9(B.
    • <%s%5%$%I$N;E;v$OB?4t$K$o$?$C$FM-8B72O@$KBg$-$J1F6A$r(B $BM?$($F$$$^$9(B.
    • $B;d$N:G=i$NO@J8$b%P!

    85. Math 113: Introduction To Abstract Algebra, Fall 2002
    Math 113 Introduction to Abstract Algebra Fall 2002. General Information.Time and Place TuTh 111230, 50 Birge Hall (Notice room change!)
    http://math.berkeley.edu/~maschenb/113-fall-02/math113.html
    Math 113: Introduction to Abstract Algebra
    Fall 2002
    General Information
    Time and Place: TuTh 11-12:30, 50 Birge Hall (Notice room change!) Course Text A First Course in Abstract Algebra , Second edition, by J. Rotman
    (Click here for a list of errata to the textbook.) Instructor: Matthias Aschenbrenner
    E-mail address: maschenb@math.berkeley.edu
    Homepage: http://www.math.berkeley.edu/~maschenb
    Office: 713 Evans Hall
    Office Phone:
    Office Hours:
    Tu 3-4:30 Graduate Student Instructor: Gautam Borooah e-Mail address: gautam@math.berkeley.edu
    Discussion Section: Mo 9-10 in 2 Evans, Tu 10 -11 in 3105 Etcheverry, We 11-12 in 329 Le Conte.
    Office hours: Mo 12-1, Tu 1-2, We 2-3 all in 1020 Evans. Downloading files from this website requires software to display PDF files, such as Acrobat Reader or Ghostview
    Course Outline
    Besides the preliminary material, the course basically consists of two parts: I. Groups, and II. Commutative rings and polynomials. (We will not seriously treat field theory in this course, this being done in Math 114, nor will we talk about non-commutative rings.) More precisely, we intend to cover the following material:

    86. Combinatorics: Enumerations And Designs
    Links Electronic Journal of Combinatorics Combinatorics.net Peter LudwigSylow History of Mathematics Last updated 9.20am on March 12, 2004.
    http://www.mast.queensu.ca/~math402/
    Combinatorics: Enumerations and Designs
    Math 402/802: Winter 2004
    Instructor: Ram Murty
    Lectures: Monday 3.30-4.20, Wednesday 2.30-3.20 and Thursday 4.30-5.20.
    Location: Jeffery Hall, room 116.
    Prerequisites: Math 212, Math 280 or equivalent.
    Textbook: Combinatorics, Techniques and Algorithms by Peter Cameron , Cambridge University Press. You can pick up the book from the campus bookstore.
    Grading: 4 assignments and 1 midterm exam worth 20% each.
    Queen's University: Code of Honor
    TA: Sebastian Cioaba Description of the course:
    Course Outline:
    Week1 - January 5:
    Subsets, partitions and permutations.
    Week2 - January 12: Recurrence relations and generating functions. Week3 - January 19: More generating functions, Catalan numbers. Week4 - January 26: Week 5 - February 2: Posets. Week6 - February 9: Week7 - February 23: Group actions, Burnside's lemma. Week8 - March 1: The necklace problem. Week9 - March 8: Polya's enumeration theorem. Assignments: The midterm exam will be on March 1st between 3.30 and 4.30pm. The room is Jeffery Hall 101. Assignment 1 Solutions 1 Assignment 2 Assignment 3 ... Assignment 5 Links: Electronic Journal of Combinatorics Combinatorics.net

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 5     81-86 of 86    Back | 1  | 2  | 3  | 4  | 5 

    free hit counter