Geometry.Net - the online learning center
Home  - Scientists - Sierpinski Waclaw
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Sierpinski Waclaw:     more books (43)
  1. Oeuvres Choisies, 3 Volumes by Waclaw Sierpinski, 1974-01-01
  2. Cardinal and Ordinal Numbers. Monografie Matematyczne. Tom 34 by Waclaw Sierpinski, 1958
  3. On the Congruence of Sets and Their Rquivalence By Finite Decomposition by Waclaw Sierpinski, 1954
  4. Lecons Sur Les Nombres Transfinis by Waclaw Sierpinski, 1928-01-01
  5. HYPOTHÈSE DU CONTINU. Monografje Matematyczne Tom IV by Waclaw. Sierpinski, 1934
  6. Cardinal and Ordinal Numbers by Waclaw Sierpinski, 1958
  7. General Topology (Mathematical Expositions, No. 7) by Waclaw) Krieger, C. Cecilia Trans Sierpinski, 1952
  8. A selection of problems in the theory of numbers (Popular lectures in mathematics) by Waclaw Sierpinski, 1964
  9. General Topology 1ST Edition by Waclaw Sierpinski, 1952
  10. On the Congruence of Sets and Their Rquivalence By Finite Decomposition by Waclaw Sierpinski, 1954-01-01
  11. The Theory of Irrational Numbers. An Introduction to Analysis. Second Edition by Waclaw Sierpinski, 1956
  12. General Topology, Second Edition by Waclaw Sierpinski, 1956-01-01
  13. Cardinal and Ordinal Nmbers; 2nd Ed.revised by Waclaw Sierpinski, 1965
  14. Cardinal and ordinal numbers2nd revised edition by waclaw sierpinski, 1965

41. Sierpinski Carpet - Encyclopedia Article About Sierpinski Carpet. Free Access, N
The sierpinski carpet, named after waclaw sierpinski The sierpinski triangle, alsocalled the sierpinski gasket, is a fractal, named after waclaw sierpinski.
http://encyclopedia.thefreedictionary.com/Sierpinski carpet
Dictionaries: General Computing Medical Legal Encyclopedia
Sierpinski carpet
Word: Word Starts with Ends with Definition The Sierpinski carpet , named after Waclaw Sierpinski Waclaw Franciszek Sierpinski , Polish spelling , (March 14, 1882 - October 21, 1969) was a Polish mathematician, known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions and topology. He was born in Warsaw. Two well-known fractals are named after him (the Sierpinski triangle and the Sierpinski carpet), as are Sierpinski numbers and the associated Sierpinski problem.
Click the link for more information. , is a fractal The term fractal is now used as a scientific concept , as well as a strictly mathematical idea. In the first sense, it means a geometric shape that is self-similar on all scales. In other words, no matter how much you magnify a fractal, it always looks the same (or at least similar).
History
Objects that we now call fractals were discovered and explored long before
Click the link for more information.

42. Waclaw Sierpinski - Caos E Oggetti Frattali - Eliana Argenti E Tommaso Bientines

http://www.webfract.it/FRATTALI/vitaSierp.htm
Waclaw Sierpinski
Nato: 14 Marzo 1882 a Varsavia, Polonia
Morto:21 Ottobre 1969 a Varsavia, Polonia
Waclaw Sierpinski nacque in un periodo in cui la Polonia si trovava sotto l'occupazione della Russia. I Russi avevano imposto la loro lingua e la loro cultura a tutte le scuole secondarie della Polonia e preferivano che i polacchi restassero analfabeti, tanto che il numero di studenti era crollato. Nonostante le difficoltà, Sierpinski entrò nel dipartimento di matematica e fisica dell'Università di Varsavia nel 1899. Nel 1903 vinse anche una medaglia d'oro per un suo saggio sulla teoria dei numeri, ma, non volendo che fosse pubblicato in russo, attese fino al 1907 quando fu edito in inglese.
Rischiò di non ottenere la laurea in scienze matematiche perchè, volontariamente, non superò l'esame di russo; per i suoi meriti scientifici tuttavia l'insegnante di russo cambiò in "buono" il pessimo risultato del suo esame, ed egli ottenne la laurea.
I suoi studi spaziarono in vari campi, dalla teoria degli insiemi, ai numeri irrazionali, all'astronomia, alla filosofia.
Durante la prima guerra mondiale, trovandosi in Russia, fu esiliato per un periodo, solo perchè polacco, a Viatka. Al termine della guerra ritornò in Polonia e ottenne una cattedra di matematica presso l'Università di Varsavia,città dove rimase fino alla fine dei suoi giorni.

43. Il Triangolo Di Waclaw Sierpinski - Caos E Oggetti Frattali - Tommaso Bientinesi
Translate this page IL TRIANGOLO DI sierpinski. Si ottiene così il triangolo di sierpinski, un frattale.Le sue caratteristiche? Senza dubbio sorprendenti. Osserviamole.
http://www.webfract.it/FRATTALI/triangolo.htm
IL TRIANGOLO DI SIERPINSKI
Precedente Successivo
  • Prendiamo come figura di partenza un triangolo equilatero: poniamo per comodità il lato = 1
  • Eliminiamo dalla sua superficie il triangolo che ha come lati i segmenti che uniscono i punti medi dei lati del triangolo precedente: otteniamo 3 triangoli di lato = 1/2
  • Ripetiamo il procedimento su ognuno dei 3 triangoli che si sono così formati: otteniamo 9 triangoli di lato = 1/4
  • Ripetiamo il procedimento su ognuno dei 9 triangoli che si sono così formati: otteniamo 27 triangoli di lato = 1/8
  • Ripetiamo il procedimento su ognuno dei 27 triangoli che si sono così formati: otteniamo 81 triangoli di lato = 1/16 Osserviamo che ogni volta il numero di triangoli si triplica, mentre il lato di ciascuno di essi si dimezza.
    E' quindi facile dedurre che al passo k
    • la misura di un lato è -k [ricordo che -k k
    • il numero di triangoli è k
    Un importante assioma della geometria ci assicura che è possibile dividere un segmento in un qualsiasi numero di parti uguali : il procedimento sopra descritto potrà essere ripetuto senza limite. Si ottiene così il triangolo di Sierpinski, un frattale.
    Le sue caratteristiche? Senza dubbio sorprendenti. Osserviamole.
  • 44. Waclaw Sierpinski Book At The Best Price
    Buy waclaw sierpinski books from the best shops. Home Books Books Browse by author W waclaw sierpinski. waclaw sierpinski.
    http://books.kelkoo.co.uk/b/a/cpc_5101_vtl_author_c19759772.html
    Search all of kelkoo Search within "Books" Bookmark this page Departments Home Books Digital Came... Electronics Flights Games, Conso... Household Ap... Mobiles, Pho... Music Shopping 4 B... Travel
     TOP BOOKS
  • Dr Ali's Nutrition Bible
    Ali, Mosaraf
    Eats, Shoots and Leaves
    Truss, Lynne
    ...
  • more top books >
     TOP AUTHORS
  • Tolkien, J.R.R. Blyton, Enid Rowling, J.K. Pratchett, Terry ... W Waclaw Sierpinski Browse by author : Waclaw Sierpinski (1-1 of 1) Title: Pythagorean Triangle Author(s): Waclaw Sierpinski more
    COMPARE DEALS WITH KELKOO - SEARCH BELOW: Title Author ISBN Company info Top searches Top products writeSyn('Keywords') Kelkoo Toolbar Promotions
    Kelkoo in Europe: Belgium Denmark France Germany ... Sweden Generated : 01-06-2004 12:25:21
  • 45. Waclaw Sierpinski - Reference Library
    waclaw sierpinski. waclaw sierpinski is interred in the Powazki Cemetery, Warsaw,Poland. Please Visit Our Sponsor. This article is from Wikipedia.
    http://www.campusprogram.com/reference/en/wikipedia/w/wa/waclaw_sierpinski.html
    Reference Library: Encyclopedia
    Main Page
    See live article Alphabetical index
    Waclaw Sierpinski
    Waclaw Franciszek Sierpinski Polish spelling March 14 October 21 ) was a Polish mathematician , known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis number theory , theory of functions and topology He was born in Warsaw Two well-known fractals are named after him (the Sierpinski triangle and the Sierpinski carpet ), as are Sierpinski numbers and the associated Sierpinski problem. Waclaw Sierpinski is interred in the Powazki Cemetery Warsaw, Poland
    This article is from Wikipedia. All text is available under the terms of the GNU Free Documentation License

    46. Das Fraktale Sierpinski-Dreieck Als Java-Applet
    Translate this page (Nach waclaw sierpinski, poln. Mathematiker, 1882-1969). waclaw sierpinski. (waclawsierpinski). Download sierpinski_Dreieck.zip (Applet und Code ca. 2 kb).
    http://www.jjam.de/Java/Applets/Fraktale/Sierpinski_Dreieck.html
    JJAM
    Home

    Applets

    Tetraeder ...
    Kugel 2

    Fraktale:
    Juliamenge
    Juliamenge MA

    Julia-Generator

    Koch-Kurve
    ...
    Lindenmayer-System 2
    Mathematik: Funktionsplotter Eratosthenes-Sieb Miller-Rabin-Test Verschiedenes: Morsezeichen-Ticker Analoguhr Scripts Kontakt - Anzeige - - Applets : Fraktale : Sierpinski-Dreieck - Das fraktale Sierpinski-Dreieck als Java-Applet. Das Sierpinski-Dreieck (Nach Waclaw Sierpinski, poln. Mathematiker, 1882-1969) [Das fraktale Sierpinski-Dreieck als Java-Applet mit Quellcode zum Download. Das Sierpinski-Dreieck lässt sich allerdings nur mit aktiviertem Java betrachten !] Sierpinski.java (Waclaw Sierpinski) Download Sierpinski_Dreieck.zip (Applet und Code ca. 2 kb) Impressum Datenschutz Nutzung eMail

    47. Waclaw Sierpinski - Explanation-Guide.info - For Information, Definition, Meanin
    waclaw sierpinski Meaning (information, definition, explanation). waclawsierpinski is interred in the Powazki Cemetery, Warsaw, Poland.
    http://explanation-guide.info/meaning/Waclaw-Sierpinski.html
    Tuesday, 1st June 2004 UTC Top Meaning Waclaw Sierpinski ...
    Blog

    Popular pages Wimbledon
    Golden Globe

    Fahrenheit 9/11

    Amnesty Internat.
    ... By subject
    Waclaw Sierpinski: Meaning (information, definition, explanation)
    Waclaw Franciszek Sierpinski Polish spelling March 14 October 21 ) was a Polish mathematician , known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis number theory , theory of functions and topology He was born in Warsaw Two well-known fractal s are named after him (the Sierpinski triangle and the Sierpinski carpet ), as are Sierpinski number s and the associated Sierpinski problem. Waclaw Sierpinski is interred in the Powazki Cemetery , Warsaw, Poland.
    Search for Waclaw Sierpinski information on: google teoma Yahoo!
    Remember what Waclaw Sierpinski means:
    Your reference for information, definition: http://explanation-guide.info/meaning/Waclaw-Sierpinski.html
    This article is licensed under the GNU FDL . It uses material from the Wikipedia article Waclaw Sierpinski
    Link this page:

    48. Pythagorean Triangles By Waclaw Sierpinski (Author) (Paperback - August 2003)
    Buy Pythagorean Triangles by waclaw sierpinski (Author) (Paperback August 2003) from home at our online store. Click here for
    http://www.mathbook.com/bio/s/Waclaw_Sierpinski/Pythagorean_Triangles_0486432785
    For Age: 4 years and up
    LeapPad
    by LeapFrog
    At Amazon
    on 4-15-2003.
    More Info

    This talking book comes with an interactive ''magic pen'' that works like a hand-held computer mouse pointer. Children can opt to turn the paper pages and listen to the story read with different voices for each character. Or they can interrupt the read-aloud session to play with the magic pen (permanently attached with a wire). They can point the pen tip to any word on a page and hear it pronounced, or touch a picture and hear a sound effect (such as ''Strike one!'' for the baseball bat). Very similar to the popular Living Books computer games, this 10-by-11-inch book is more portable than a home computer. Stories in this set include Lil's Loose Tooth, Richard Scarry's Best Word Book Ever, and Winnie the Pooh in A Sweet Good Morning. The set also includes a paper piano keyboard and map and human anatomy games. Gail Hudson
    Batteries: 4 AA batteries required.
    How to Prepare for the SAT II: Math Level IC
    by James J. Rizzuto (Paperback - March 2000)
    Visit Our Sites: Buy Law Books Top Quality Wrist Watches

    49. TPE Fractales : Biographie De Sierpinski
    Translate this page Gastion Julia. waclaw sierpinski. Helge Von Koch. E-mail. Biographie de sierpinski.waclaw sierpinski est un mathématicien polonais né à Varsovie en 1882.
    http://irchat.free.fr/tpefractales/sierpbio.php
    @import url("style.css"); BOURDEAUDUCQ Sébastien / RIQUET Jean Charles TPE Fractales Vous êtes ici : Version imprimable Sommaire Page d'accueil et introduction I - Présentation Définition d'une fractale Le flocon de Von Koch Le triangle de Sierpinski L'ensemble de Mandelbrot Autres fractales basées sur les complexes La dimension fractale II - Les fractales dans la nature 1. Etude d'objets fractals naturels La côte de Bretagne Chez les végétaux : Le chou-fleur Le chou romanesco Les fougères Dans le corps humain : L'intestin grêle Les poumons Le réseau coronarien 2. La modélisation des fractales naturelles Les L-systèmes IFS Conclusion Divers Biographies des personnes célèbres ayant étudié les fractales Benoît Mandelbrot Gastion Julia Waclaw Sierpinski Helge Von Koch Michael Barnsley Annexes Bibliographie Le TPE Nous contacter Livre d'or E-mail Biographie de Sierpinski Waclaw Sierpinski est un mathématicien polonais né à Varsovie en 1882. Il reçut son doctorat en 1908 et devint professeur à l'université de Lvov. Il consacra alors ses recherches à la théorie des nombres. Après la Première Guerre Mondiale, il obtient en 1919 un poste à l'université de Varsovie où il y resta jusqu'à sa mort en 1969. Entre temps, il a écrit plus de 700 articles et 50 livres dont "La théorie des nombres irrationnels" en 1910, et "La théorie des nombres" en 1912.

    50. Waclaw Sierpinski - InformationBlast
    waclaw sierpinski Information Blast. waclaw sierpinski. waclaw sierpinski isinterred in the Powazki Cemetery, Warsaw, Poland. © 2004 Information Blast.
    http://www.informationblast.com/Waclaw_Sierpinski.html
    Waclaw Sierpinski
    Waclaw Franciszek Sierpinski Polish spelling March 14 October 21 ) was a Polish mathematician , known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis number theory , theory of functions and topology He was born in Warsaw Two well-known fractals are named after him (the Sierpinski triangle and the Sierpinski carpet ), as are Sierpinski numbers and the associated Sierpinski problem. Waclaw Sierpinski is interred in the Powazki Cemetery Warsaw, Poland Wikipedia is available under the terms of the GNU Free Documentation License

    51. ¿ÍÅ©·Î¿ì ½Ã¾îÇɽºÅ°(Waclaw Sierpinski)
    The summary for this Korean page contains characters that cannot be correctly displayed in this language/character set.
    http://user.chollian.net/~badang25/sierpinski/waclaw_sier.htm
    ¹Ùú¶óÇÁ ½¿¡¸£ÇɽºÅ°(Waclaw Sierpinski)
    Warsaw, Æú¶õµå
    ½¿¡¸£ÇɽºÅ°ÀÇ °¡Àå Áß¿äÇÑ ¾÷ÀûÀº area of set theory(ÁýÇÕ·ÐÀÇ ¿µ¿ª), point set topolosy, number theory(Á¤¼ö·Ð)¿¡¼­ ÀÌ´Ù. ÁýÇշп¡¼­ ±×´Â the axiom of choice(¼±ÅÀÇ °ø¸®)¿Í the continuem hypothesis(¿¬¼Ó¼ °¡¼³)¿¡ °øÇåÇÏ¿´´Ù. Waclaw Sierpinski ´Â "¹Ùú¶óÇÁ ½¿¡¸£ÇɽºÅ°"¶ó°í Àд´ٰí ÇÕ´Ï´Ù.
    Warsaw´Â Æú¶õµåÀÇ ¼öµµ "¹Ù¸£»þ¹Ù"ÀÔ´Ï´Ù.

    52. VEDA
    11.11. MATEMATIKOVÉ V HISTORII waclaw sierpinski Jirí Svršek narozen 14. brezna1882 ve Varšave, Polsko zemrel 21. ríjna 1969 ve Varšave, Polsko.
    http://pes.internet.cz/veda/clanky/16529_48_0_0.html
    NEVIDITELNÝ PES ZVÍØETNÍK BYDLENÍ REALITY ... ENCYKLOPEDIE
    Nedìle 11.11.2001
    Svátek má Martin
    Biologie a pøíroda

    Vesmír

    Fyzika

    Medicína
    ...

    Archiv vydání
    Nadpis Autor Text èlánku
    NEJKRÁSNÌJŠÍ VÁNOÈNÍ DÁREK PØESTAÒ KOUØIT A VYHRAJEŠ VLASTNÍ ŽIVOT
    akce zaèíná na serveru HTTP://viditelne.prase.cz Motto akce: "Politik nemùže pøijímat do státního rozpoètu peníze získané prodejem nejnebezeènìjší drogy cigarety, která zabije jen v Èeské Republice dvacet tisíc lidí roènì, absurdnì v dobì, kdy policie a záchranné sbory musí a po právu prohlížet kupøíkladu obálky, ale i všeliké lokality, které jsou by jen podezøelé z toho, že by mohly být kontaminovány nebezpeènou nákazou. Policie nás chrání pøed terorem a patøí jí za to dík i ohleduplnost nás všech." Smrt a nemoci z cigaret nejsou legální tím, že je brání zkorumpovaní politikové, leckdy bohužel i prostou ignorací žurnalisté, èi lobisté tabákových koncernù. Smrt z cigaret je stejný teroristický èin jako kterýkoliv jiný a po duchu platných zákonù je veøejným ohrožením èíslo jedna. Což ví ostatnì i pan ministr zdravotnictví, jak nám vzkazuje na krabièkách, ale nikterak ho to nevzrušuje zøejmì?, nebo nechává cigarety dále distribuovat jako potraviny - v této souvislosti je smutné zjištìní, že žvýkací tabák neprojde.. Cigarety ano? Proè tedy cigareta není novokuøákùm zakázána, co hledá v kapitole "Potravináøský a tabákový prùmysl?" Co hledá na pultu každých potravin, ve skryté i otevøené reklamì. Dùmyslnou strategií tak asociuje zejména mladým lidem, že ono to zase tak hrozné není, to by to nedali do potravin, to by nekouøil ten a ten... Cigareta bez zábran hledá nové obìti a jejich nárùst u žákù základních i støedních škol je rekordní za poslední desetiletí.

    53. Sierpinski Triangle
    Click on the stamp to see an enlargement. Click on the Mandelbrot Setto read more about fractals. waclaw sierpinski (1882 1969 ).
    http://curvebank.calstatela.edu/sierpinski/sierpinski.htm
    Back to . . . Curvebank Home Page
    Sierpinski Triangles
    This requires JAVA 1.2 or better. If you have a Mac, the operating system must be OS X or newer. Using the mouse, click on any three points in the box.
    NCB Deposit # 2 The National Curve Bank welcomes the Sierpinski Triangle animation of
    Kathleen Shannon and Michael Bardzell

    Dept. of Mathematics and Computer Science

    Salisbury University, Salisbury, MD.
    NCB Deposit #3
    A Sample
    of
    recursion equations:

    For a definition click here: Click on the stamp to see an enlargement. Click on the Mandelbrot Set to read more about fractals. Waclaw Sierpinski World War I totally disrupted the mathematical communities of eastern Europe. Rather than try to re-build comprehensive university programs in several areas of research, Sierpinski, Kuratowski, Banach and others decided to work together in the emerging field of abstract spaces. They soon became known as the "Polish School." Their first international recognition came from publishing a new journal, Fundamenta Mathematicae (1920), devoted to set theory and related topics, and not to their work in topology. Indeed, the publication of Banach's dissertation in 1922 has been called the birth of functional analysis.

    54. Area Of A Circle Animation
    sierpinski, waclaw, Pythagorean Triangles, Scripta Mathematica StudiesNumber Nine. (This is a translation by A. Sharma of a work
    http://curvebank.calstatela.edu/circle/circle.htm
    Back to . . . . Curve Bank Home Page NCB Deposit # 17 Tom Richmond
    Bettina Richmond
    Western Kentucky University
    1 Big Red Way
    Bowling Green, KY 42101 tom.richmond@wku.edu
    bettina.richmond@wku.edu

    Animations of Two Classics: Derivation of the Formula for the Area of a Circle
    and the
    Pythagorean Theorem From ( I, 47) of the Elements.

    From the first page of the
    first printed edition of Euclid's Elements, Venice, 1482. Scholars name this the Ratdolt edition in honor of the printer and publisher. It is not known how the figures were printed in the text.
    Before leaving the above images, we invite the viewer to consider the following: In the upper right hand corner is the ( I, 47 ) proof of the Pythagorean Theorem from one of the world's oldest hand written copies of Euclid's Elements. To the above right are figures taken from the first printed edition. Now, on the left, we see the contribution of animation, the gift of our generation, to these famous mathematical concepts. The circle, ellipse, parabola and hyperbola are "sections" of a cone. Recall the study of cones dates to Apollnius (262-190 BC) and other early Greeks.

    55. The Sierpinski Gasket
    On the left and right, we see a series of sierpinski gaskets (drawn usingFractint and Paint Shop Pro), discovered by waclaw sierpinski.
    http://www.jimloy.com/fractals/sierpins.htm
    Return to my Mathematics pages
    Go to my home page
    The Sierpinski Gasket
    A Sierpinski gasket is also called a Sierpinski sieve. On the left and right, we see a series of Sierpinski gaskets (drawn using Fractint and Paint Shop Pro ), discovered by Waclaw Sierpinski. The first order would just be a straight line segment. Here, I show orders 2 through 7. You should probably see how each new order is built from the previous one. The true Sierpinski gasket is the limit of infinitely many of these steps. Instead of lines, we can also build it with dark triangles (or any other object). The Sierpinski gasket is related to The Yanghui Triangle (usually called Pascal's triangle), below. I have drawn hexagons around the odd numbers. That pattern is identical to that of the Sierpinski gasket, forever. There is an interesting experiment called "the chaos game," in which random (presumably chaotic) chance produces great order. On the left, we see a picture. We draw three (or more) points (the vertices of a triangle, which doesn't have to be equilateral or isosceles), labeled 1, 2, and 3. Then we choose a starting point S, at random (the one I chose is not within the triangle). Then we begin the game. We proceed to choose random numbers, 1, 2, or 3 (with dice or whatever). Each random number defines a new point halfway between the latest point and the point toward which our random number directs us. For example, my first random number was a 1; so I drew a point halfway between S and 1. Then I got another random 1, then 3, 2, 1, and 3. After drawing 6 points, I perceive no obvious pattern. With a computer, it is easier to continue to choose many more points.

    56. The Mathematics Genealogy Project - Waclaw Sierpinski
    waclaw sierpinski Biography Ph 11. According to our current onlinedatabase, waclaw sierpinski has 4 students and 1408 descendants.
    http://www.genealogy.ams.org/html/id.phtml?id=12545

    57. Science Jokes:Waclaw Sierpinsky
    waclaw Sierpinsky. waclaw Sierpinsky (18821969),Polish mathematician. counting trunks.
    http://www.xs4all.nl/~jcdverha/scijokes/Sierpinski.html
    Index Comments and Contributions Index Jokes with Famous Scientists
    Waclaw Sierpinsky
    Waclaw Sierpinsky (1882-1969), Polish mathematician Index Comments and Contributions

    58. Efg's Fractals And Chaos -- Sierpinski Triangle Lab Report
    Mathematical Background. Polish mathematician waclaw sierpinski introducedthe sierpinski Gasket in 1915. Starting with a triangle
    http://www.efg2.com/Lab/FractalsAndChaos/SierpinskiTriangle.htm
    Fractals and Chaos Sierpinski Triangle Lab Report Create a Sierpinkski "Gasket" By Cutting Holes in a Triangle Purpose
    The purpose of this project is to show how to create a Sierpinksi gasket, a "holey" triangle, by recursively cutting holes in a triangle. Mathematical Background Polish mathematician Waclaw Sierpinski introduced the "Sierpinski Gasket" in 1915. Starting with a triangle, recursively cut the triangle formed by the midpoints of each side: The single equilateral triangle in Step 0, is divided into four equal-area equilateral triangles in Step 2. The "middle" triangle is colored differently to indicate it has been "cut" from the object. This same "rule" is applied an infinite number of times. Here are the next two steps: Let's analyze what's happening. Consider the perimeter of the red triangles: Step Triangles 3 sides/triangle Length of Side Total Length a a/2 a/4 k k a/2 k k+1 a/2 k As k approaches infinity, the perimeter of all the red triangles approaches infinity. The area of an equilateral triangle with each side length a is . (See the von Koch Curve Lab Report for details.) For further computations here, we'll make computations as a fraction of A

    59. Waclaw Sierpinski
    Translate this page waclaw sierpinski. Academicus.ch - Kostenloses Online-Lexikon. waclaw sierpinski.waclaw Franciszek sierpinski (poln. waclaw sierpinski) wurde am 14.
    http://www.academicus.ch/de/waclaw_sierpinski.html
    Waclaw Sierpinski
    Academicus.ch - Kostenloses Online-Lexikon
    Hauptseite Edit this page
    Waclaw Sierpinski
    Waclaw Franciszek Sierpinski 14. März in Warschau geboren und starb dort am 21. Oktober . Er studierte am Institut für Mathematik und Physik an der Warschauer Universität. 1908 wurde er Dozent und 1910 schließlich Professor an der Universität von Lvov. Er war bekannt für seine herausragenden Beiträge zur Mengenlehre (Untersuchungen zum Auswahlaxiom und zur Kontinuumshypothese), Zahlentheorie Funktionentheorie und Topologie Zwei wohlbekannte Fraktale - das Sierpinski-Dreieck und der Sierpinski-Teppich - sind nach ihm benannt, genauso das Sierpinski-Problem. ZumWikipedia-Artikel Impressum Sitemap Sitemap all
    All text is available under the terms of the GNU Free Documentation License

    60. Dictionnaires Des Nombres - Nombres De Sierpinski
    sierpinski. RECHERCHES. waclaw sierpinski.Retour NOMBRE 78 557. Pages voisines. Nombres de Fermat. NOMBRES DE sierpinski.
    http://perso.wanadoo.fr/yoda.guillaume/N1000/Sierpins.htm
    Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: Vous êtes sur la page: Nombres de SIERPINSKI du Dictionnaire des nombres Sommaire de cette page APPROCHE NOMBRE de SIERPINSKI RECHERCHES Waclaw SIERPINSKI Retour NOMBRE 78 557 Pages voisines Nombres de Fermat NOMBRES DE SIERPINSKI Nombres formés avec des puissances de 2 qui ne sont curieusement jamais premiers APPROCHE Exploration des nombres Prenons les puissances de 2 multipliées par un nombre k et ajoutons 1 N = k . 2 n Cherchons si ces nombres sont premiers ou composés k n N = k . 2 n Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Premier Nous constatons que pour chaque valeur de k, il existe rapidement une valeur de n donnant un nombre N premier Pour chaque k, notons la première valeur de n qui donne N premier k n N = k . 2 n Pour tous les k successifs, il y a un N premier Et, la valeur de n reste faible et, pourtant…curieusement Il existe des nombres k pour lesquelles le nombre N ne sera jamais premier Il y en a même une infinité Une idée de la croissance de n pour N premier Cette fois, nous allons noter la valeur de n record

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter