Geometry.Net - the online learning center
Home  - Scientists - Sierpinski Waclaw
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Sierpinski Waclaw:     more books (43)
  1. Topologists: Waclaw Sierpinski, René Thom, Henri Poincaré, Kazimierz Kuratowski, Felix Hausdorff, John Milnor, Vladimir Arnold
  2. Biuro Szyfrów: Waclaw Sierpinski, Marian Rejewski, Jan Kowalewski, Bomba, Zygalski Sheets, Stanislaw Lesniewski, Cadix, Cyclometer
  3. University of Warsaw Alumni: Frédéric Chopin, Menachem Begin, Waclaw Sierpinski, Kazimierz Kuratowski, Alfred Tarski, Witold Gombrowicz
  4. Members of the Polish Academy of Learning: Waclaw Sierpinski, Stefan Banach, Kazimierz Kuratowski, Hugo Steinhaus, Edward Flatau
  5. Polish Academy of Learning: Members of the Polish Academy of Learning, Waclaw Sierpinski, Stefan Banach, Kazimierz Kuratowski, Hugo Steinhaus
  6. Alumni of Jagiellonian University: Pope John Paul Ii, Wislawa Szymborska, Waclaw Sierpinski, Carl Menger, John Iii Sobieski, Ivo Andric
  7. General Topology by Waclaw; Krieger, C. Cecilia (trans.) Sierpinski, 1961-01-01
  8. Cardinal and Ordinal Numbers, Second Edition by Waclaw Sierpinski, 1965
  9. Introduction to general topology. Translated by C. Cecilia Krieger. by Waclaw Sierpinski, 1934
  10. Lecons sur les nombres transfinis. by Waclaw Sierpinski, 1950
  11. Lecons Sur Les Nombres Transfinis by Waclaw Sierpinski, 1928
  12. Hypothese Du Cotinu by Waclaw Sierpinski, 1956-01-01
  13. Oeuvres Choisies.Tome I:Bibliographie, Théorie des Nombres et Analyse Mathématique by Waclaw Sierpinski, 1974
  14. On the Congruence of Sets and Their Rquivalence By Finite Decomposition by Waclaw Sierpinski, 1954-01-01

21. Waclaw Franciszek Sierpinski - Wikipedija
Not logged in Vpis Pomoc. Drugi jeziki Deutsch English Polski.Waclaw Franciszek Sierpinski. Iz Wikipedije, proste enciklopedije.
http://sl.wikipedia.org/wiki/Waclaw_Franciszek_Sierpinski
Waclaw Franciszek Sierpinski
Iz Wikipedije, proste enciklopedije.
Wacław Franciszek Sierpiński poljski matematik 14. marec Varšava ... spremeni
Glej tudi
Views Personal tools Navigacija Išči Orodna škatla Drugi jeziki

22. Import Java.awt.*; Import Java.awt.event.*; Import Java.applet.
class SierpinskiApplet extends Applet implements ActionListener { Panel topRow =new Panel(); TextField in = new TextField( 1 ); sierpinski waclaw; public void
http://mickunas.cs.uiuc.edu/java-book/Code/ch14/Sierpinski/F111.java

23. Einige Der Bedeutenden Mathematiker
Translate this page Shannon Claude E. 1916-. Siegel Carl Ludwig, 1896-1981. sierpinski waclaw,1882-1969. Stieltjes Thomas Joannes, 1856-1894. Stifel Michael, 1486-1567.
http://www.zahlenjagd.at/mathematiker.html
Einige der bedeutenden Mathematiker
Abel Niels Hendrik Appolonius von Perga ~230 v.Chr. Archimedes von Syrakus 287-212 v.Chr. Babbage Charles Banach Stefan Bayes Thomas Bernoulli Daniel Bernoulli Jakob Bernoulli Johann Bernoulli Nicolaus Bessel Friedrich Wilhelm Bieberbach Ludwig Birkhoff Georg David Bolyai János Bolzano Bernhard Boole George Borel Emile Briggs Henry Brouwer L.E.J. Cantor Georg Ferdinand Carroll Lewis Cassini Giovanni Domenico Cardano Girolamo Cauchy Augustin Louis Cayley Arthur Ceulen, Ludolph van Chomsky Noel Chwarismi Muhammed Ibn Musa Al Church Alonzo Cohen Paul Joseph Conway John Horton Courant Richard D'Alembert Jean Le Rond De Morgan Augustus Dedekind Julius Wilhelm Richard Descartes René Dieudonné Jean Diophantos von Alexandria ~250 v. Chr. Dirac Paul Adrien Maurice Dirichlet Peter Gustav Lejeune Eratosthenes von Kyrene 276-194 v.Chr. Euklid von Alexandria ~300 v.Chr. Euler Leonhard Fatou Pierre Fermat Pierre de Fischer Ronald A Sir Fourier Jean-Baptiste-Joseph Fraenkel Adolf Frege Gottlob Frobenius Ferdinand Georg Galois Evariste Galton Francis Sir Gauß Carl Friedrich Germain Marie-Sophie Gödel Kurt Goldbach Christian Hadamard Jacques Hamilton William Rowan Hausdorff Felix Hermite Charles Heawood Percy Heron von Alexandrien ~60 n.Chr.

24. Sierpinski
Waclaw Sierpinski. Born 14 March 1882 in Warsaw, Poland Died 21 Oct 1969 in Warsaw,Poland. Show birthplace location. Waclaw Sierpinski s father was a doctor.
http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Srpnsk.htm
Waclaw Sierpinski
Born: 14 March 1882 in Warsaw, Poland
Died: 21 Oct 1969 in Warsaw, Poland
Show birthplace location Previous (Chronologically) Next Biographies Index
Previous
(Alphabetically) Next Welcome page Waclaw Sierpinski 's father was a doctor. He attended school in Warsaw where his talent for mathematics was quickly spotted by his first mathematics teacher. This was a period of Russian occupation of Poland and it was a difficult time for the gifted Sierpinski to be educated in Poland. The Russians had forced their language and culture on the Poles in sweeping changes to all secondary schools implemented between 1869 and 1874. The Russian aim was to keep illiteracy in Poland as high as possible, so they discouraged learning and the number of students fell. Despite the difficulties, Sierpinski entered the Department of Mathematics and Physics of the University of Warsaw in 1899. It would be more accurate to describe it as the Czar's University since this was the official name of the University which had become a Russian university in 1869. The lectures at the University were all in Russian and the staff were entirely Russian. It is not surprising therefore that it would be the work of a Russian mathematician, one of his teachers Voronoy , that first attracted Sierpinski.

25. Sierpinski, Waclaw (1882-1969) -- From Eric Weisstein's World Of Scientific Biog
Nationality , Polish v. sierpinski, waclaw (18821969), Polish mathematicianwho contributed to number theory, topology, and set theory.
http://scienceworld.wolfram.com/biography/Sierpinski.html
Branch of Science Mathematicians Nationality Polish
Sierpinski, Waclaw (1882-1969)

Polish mathematician who contributed to number theory topology and set theory
Additional biographies: MacTutor (St. Andrews)
References Sierpinski, W. 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Sierpinski, W. and Schinzel, A. Elementary Theory of Numbers, 2nd Eng. ed. Amsterdam, Netherlands: North-Holland, 1988.

26. Sierpinski Problem
The sierpinski Problem Definition and Status. In 1960 waclaw sierpinski (18821969) proved the following interesting result
http://www.prothsearch.net/sierp.html
The Sierpinski Problem: Definition and Status
In 1960 Waclaw Sierpinski (1882-1969) proved the following interesting result. Theorem [S] There exist infinitely many odd integers k such that k n + 1 is composite for every n A multiplier k with this property is called a Sierpinski number . The Sierpinski problem consists in determining the smallest Sierpinski number. In 1962, John Selfridge discovered the Sierpinski number k = 78557, which is now believed to be in fact the smallest such number. Conjecture. The integer k is the smallest Sierpinski number. To prove the conjecture, it would be sufficient to exhibit a prime k n + 1 for each k Summary of results. This summary describes developments in the computational approach to a possible "solution" of the Sierpinski problem, from the earliest attempts in the late 1970ies until November 2002, and gives a comprehensive status of results known at that point. For more recent information, refer to the distributed computing project Seventeen or Bust . The name of this project indicates that when it was created, only 17 uncertain candidates k were left to be investigated, namely

27. Encyclopedia: Waclaw Sierpinski
Encyclopedia waclaw sierpinski. waclaw Franciszek sierpinski, Polish spellingWacaw sierpinski numbers and the associated sierpinski problem. waclaw sierpinski is interred in
http://www.nationmaster.com/encyclopedia/Waclaw-Sierpinski

Supporter Benefits
Signup Login Sources ... Pies
Factoid #26 You're 66 times more likely to be prosecuted in the USA as in France Interesting Facts Make your own graph:
Hold down Control and click on
several. Compare All Top 5 Top 10 Top 20 Top 100 Bottom 100 Bottom 20 Bottom 10 Bottom 5 All (desc) in category: Select Category Agriculture Crime Currency Democracy Economy Education Energy Environment Food Geography Government Health Identification Immigration Internet Labor Language Manufacturing Media Military Mortality People Religion Sports Taxation Transportation Welfare with statistic: view: Correlations Printable graph / table Pie chart Scatterplot with ... * Asterisk means graphable.
Added May 21
  • Mortality stats Multi-users ½ price Catholic stats

  • Top Graphs
  • Richest Most Murderous Most Populous Most Militaristic ...
  • More Stats
    Categories
  • Agriculture Background Crime Currency ... Welfare
  • Updated: Nov 03, 2003
    Encyclopedia : Waclaw Sierpinski
    Waclaw Franciszek Sierpinski Polish spelling March 14 October 21 ) was a Polish mathematician, known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions and topology.
    He was born in Warsaw
    Two well-known fractals are named after him (the Sierpinski triangle and the Sierpinski carpet ), as are

    28. Sierpinski
    Biography of waclaw sierpinski (18821969) waclaw sierpinski. Born 14 March 1882 in Warsaw, Russian Empire (now Poland) Next. Main index. waclaw sierpinski's father was a doctor
    http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Sierpinski.html
    Waclaw Sierpinski
    Born: 14 March 1882 in Warsaw, Russian Empire (now Poland)
    Died: 21 Oct 1969 in Warsaw, Poland
    Click the picture above
    to see five larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Waclaw Sierpinski 's father was a doctor. He attended school in Warsaw where his talent for mathematics was quickly spotted by his first mathematics teacher. This was a period of Russian occupation of Poland and it was a difficult time for the gifted Sierpinski to be educated in Poland. The Russians had forced their language and culture on the Poles in sweeping changes to all secondary schools implemented between 1869 and 1874. The Russian aim was to keep illiteracy in Poland as high as possible, so they discouraged learning and the number of students fell. Despite the difficulties, Sierpinski entered the Department of Mathematics and Physics of the University of Warsaw in 1899. It would be more accurate to describe it as the Czar's University since this was the official name of the University which had become a Russian university in 1869. The lectures at the University were all in Russian and the staff were entirely Russian. It is not surprising therefore that it would be the work of a Russian mathematician, one of his teachers Voronoy , that first attracted Sierpinski.

    29. References For Sierpinski
    References for waclaw sierpinski. Biography in Dictionary of Scientific Biography(New York 19701990). LP de Alcantara, waclaw sierpinski (Portuguese), Bol.
    http://www-gap.dcs.st-and.ac.uk/~history/References/Sierpinski.html
    References for Waclaw Sierpinski
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Articles:
  • Z Adamowicz, Waclaw Sierpinski's contribution to general set theory (Polish), Wiadomosci matematyczne
  • L P de Alcantara, Waclaw Sierpinski (Portuguese), Bol. Soc. Paran. Mat.
  • Iv Dimovski, Waclaw Sierpinski (1882-1969) (Bulgarian), Fiz.-Mat. Spis. Bulgar. Akad. Nauk.
  • R Engelking, The papers of Waclaw Sierpinski in topology (Polish), Wiadomosci matematyczne
  • M M Fryde, Waclaw Sierpinski- Mathematician, Scripta Mathematica
  • M M Fryde, Waclaw Sierpinski- mathematician, Polish Rev.
  • K Kuratowski, Waclaw Sierpinski (1882-1969), Acta Arithmetica
  • E Marczewski, On the works of Waclaw Sierpinski: Main trends of his works on set theory. Recollections and reflections (Polish), Wiadomosci matematyczne
  • I G Mel'nikov, Waclaw Sierpinski (Russian), Istor.-Mat. Issled.
  • Publications of Waclaw Sierpinski in the theory of numbers, Acta Arithmetica
  • A Rotkiewicz, W Sierpinski's works on the theory of numbers, Rend. Circ. Mat. Palermo
  • 30. Books By Waclaw Sierpinski At Walmart.com - Every Day Low Prices
    Find books written by waclaw sierpinski. Select from 1000's of books at Walmart.com, we have a great selection of highquality merchandise, friendly service and, of course, Every Day Low Prices.
    http://rdre1.inktomi.com/click?u=http://na.link.decdna.net/n/3532/4200/www.walma

    31. Waclaw Sierpinski
    name university year home submit about help waclaw sierpinski. Doctorate from JagiellonianUniversity in 1906 Adviser Georgy Fedoseevich Voronoi Students
    http://sigact.acm.org/cgi-bin/genealogy.cgi?file=database-S.html&from=Sierpinski

    32. Sierpinski Triangle - Wikipedia, The Free Encyclopedia
    (Redirected from sierpinski gasket). The sierpinski triangle, also calledthe sierpinski gasket, is a fractal, named after waclaw sierpinski.
    http://en.wikipedia.org/wiki/Sierpinski_gasket
    Sierpinski triangle
    From Wikipedia, the free encyclopedia.
    (Redirected from Sierpinski gasket
    The Sierpinski triangle , also called the Sierpinski gasket , is a fractal , named after Waclaw Sierpinski An algorithm for obtaining arbitrarily close approximations to the Sierpinski triangle is as follows:
  • Start with any triangle in a plane. The canonical Sierpinski triangle uses an equilateral triangle with a base parallel to the horizontal axis. Shrink the triangle by 1/2, make three copies, and translate them so that each triangle touches the two other triangles at a corner. Repeat step 2 with each of the smaller triangles.
  • The actual fractal is what would be obtained after an infinite number of iterations. More formally, one describes it in terms of functions on closed sets of points. If we let d_a note the dilation by a factor of 1/2 about a point a, then the Sierpinski triangle with corners a, b, and c is the fixed set of the transformation d_a U d_b U d_c. This is an attractive fixed set, so that when the operation is applied to any other set repeatedly, the images converge on the Sierpinski triangle. This is what is happening with the triangle above, but any other set would suffice. If one takes a point and applies each of the transformations d_a, d_b, and d_c to it randomly, the resulting points will be dense in the Sierpinski triangle, so the following algorithm will again generate arbitrarily close approximations to it:

    33. AIM Reprint Library:
    Y Z. Listing for sierpinski, waclaw. Viewing Page 1. Sur ensemble indenombrablenondense. Kuratowski, K. sierpinski, waclaw. Viewing Page
    http://www.aimath.org/library/library.cgi?database=reprints;mode=display;BrowseT

    34. Sierpinski Triangle
    sierpinski triangle. The sierpinski triangle, also called the sierpinskigasket, is a fractal, named after waclaw sierpinski. An
    http://www.fact-index.com/s/si/sierpinski_triangle.html
    Main Page See live article Alphabetical index
    Sierpinski triangle
    The Sierpinski triangle , also called the Sierpinski gasket , is a fractal , named after Waclaw Sierpinski An algorithm for obtaining arbitrarily close approximations to the Sierpinski triangle is as follows:
  • Start with any triangle in a plane. The canonical Sierpinski triangle uses an equilateral triangle with a base parallel to the horizontal axis. Shrink the triangle by 1/2, make three copies, and translate them so that each triangle touches the two other triangles at a corner. Repeat step 2 with each of the smaller triangles.
  • The actual fractal is what would be obtained after an infinite number of iterations. More formally, one describes it in terms of functions on closed sets of points. If we let d_a note the dilation by a factor of 1/2 about a point a, then the Sierpinski triangle with corners a, b, and c is the fixed set of the transformation d_a U d_b U d_c. This is an attractive fixed set, so that when the operation is applied to any other set repeatedly, the images converge on the Sierpinski triangle. This is what is happening with the triangle above, but any other set would suffice. If one takes a point and applies each of the transformations d_a, d_b, and d_c to it randomly, the resulting points will be dense in the Sierpinski triangle, so the following algorithm will again generate arbitrarily close approximations to it:

    35. Biografia De Sierpinski, Waclaw
    Translate this page sierpinski, waclaw. (Varsovia, 1882- id., 1969) Matemático polaco.Miembro fundador de la escuela matemática polaca moderna, junto
    http://www.biografiasyvidas.com/biografia/s/sierpinski.htm
    Inicio Buscador Utilidades Recomendar sitio
    Enlaces
    Sierpinski, Waclaw (Varsovia, 1882- id ., 1969) Matemático polaco. Miembro fundador de la escuela matemática polaca moderna, junto con Janiszewski y Mazurkiewicz, que contribuyó al progreso de la teoría de conjuntos y de la topología y favoreció la consolidación de los fundamentos lógicos de las matemáticas. Llevó a cabo importantes investigaciones sobre teoría de números. Inicio Buscador Recomendar sitio

    36. Índice Alfabético - S
    Translate this page Karl Manne George Siegel, Carl Ludwig Siegel, Don Siemens, Von Siemens, Werner vonSienkiewicz, Henryk Sieroszewski, waclaw sierpinski, waclaw Sierra Sierra O
    http://www.biografiasyvidas.com/biografia/s/index0019.htm
    Inicio Buscador Utilidades Recomendar sitio
    Enlaces

    S Sheraton, Thomas
    Sheridan, Philip Henry

    Sheridan, Richard Brinsley Butler

    Sherman, John
    ...
    Sigea de Velasco, Luisa

    Inicio Buscador Recomendar sitio

    37. Lexikon - Waclaw Sierpinski Definition Erklärung Bedeutung
    Translate this page Was Wer Wo ist waclaw sierpinski - Definition Erklärung Bedeutung von waclawsierpinski. waclaw sierpinski. Artikel auf Englisch waclaw sierpinski.
    http://www.net-lexikon.de/Waclaw-Sierpinski.html
    Suche:
    Info
    Mitglied werden A B ...
    Impressum

    Beta 0.71 powered by:
    akademie.de

    Wikipedia

    PHP

    PostgreSQL
    ... englischen Lexikon Google News zum Stichwort
    Waclaw Sierpinski
    Definition, Bedeutung, Erkl¤rung im Lexikon
    Artikel auf Englisch: Waclaw Sierpinski
    Waclaw Franciszek Sierpinski (poln. Wacław Sierpiński) wurde am 14. M¤rz in Warschau geboren und starb dort am 21. Oktober . Er studierte am Institut f¼r Mathematik und Physik an der Warschauer Universit¤t. 1908 wurde er Dozent und 1910 schlieŸlich Professor an der Universit¤t von Lvov. Er war bekannt f¼r seine herausragenden Beitr¤ge zur Mengenlehre (Untersuchungen zum Auswahlaxiom und zur Kontinuumshypothese), Zahlentheorie Funktionentheorie und Topologie Zwei wohlbekannte Fraktal e - das Sierpinski-Dreieck und der Sierpinski-Teppich - sind nach ihm benannt, genauso das Sierpinski-Problem. B¼cher bei Amazon.de zum Stichwort: Waclaw Sierpinski Info:
    Dieser Artikel aus Wikipedia wird durch die GNU FDL lizenziert.
    Im Net-Lexikon weitersuchen
    HTML-Tag zur Verlinkung dieses Stichworts auf Ihrer Web-Site: nach oben

    38. Auteur - Sierpinski, Waclaw
    Translate this page Auteur sierpinski, waclaw, Ouvrage Teoria liczb sierpinski, waclaw (Principal) PanstwoweWydawnictwo Naukowe Monografie matematyczne, 0038 1959 Ouvrage RdC (S).
    http://bibli.cirm.univ-mrs.fr/Auteur.htm?numrec=061044424922620

    39. Descripteur - 04-XX
    Translate this page Ouvrage Leçons sur les nombres transfinis sierpinski, waclaw (Principal) GauthierVillars Collection de monographies sur la théorie des fonctions, 1950
    http://bibli.cirm.univ-mrs.fr/Thesaurus.htm&numrec=051910091919280&Range=0003
    Descripteur
      AMS 04-XX
    Ajouter au panier Imprimer Envoyer par mail
    Ouvrage
    L'anti-fondation

    Dzierzgowski, D.
    Hinnion, R.
    Academia

    Cahier du centre de logique, 0007
    Ouvrage RdC (A)
    Ouvrage
    Combinatorics and partially ordered sets Dimension theory

    Trotter, William T.
    (Principal) The Johns Hopkins University Press Johns Hopkins series in the mathematical sciences, Ouvrage RdC (T) Ouvrage Set theory with a universal set exploring an untyped universe Forster, T. E. (Principal) Clarendon Press Oxford Logic Guide, 0020 Ouvrage Kahane, Jean-Pierre (Principal) ; Salem, Raphael (Co-auteur) Hermann Ouvrage RdC (K) Ouvrage Theory of functions of a real variable. Vol. I Natanson, I. P. (Principal) ; Boron, Leo F. (Traducteur) ; Hewitt, Edwin (Collaborateur) Frederick ungar Publishing Co. Ouvrage RdC (N) Mostowski, Andrzej (Principal) Les Presses De L'Universite De Montreal SMS, 0025 Extremal problems for finite sets : the conference on... #June 16-21 Frankl, P. (Editeur) ; (Editeur) ; Katona, G. (Editeur) ; (Editeur) Bolyai society mathematical studies, 0003

    40. Waclaw Sierpinski Definition Meaning Information Explanation
    waclaw sierpinski definition, meaning and explanation and more about waclaw sierpinski.FreeDefinition - Online Glossary and Encyclopedia, waclaw sierpinski.
    http://www.free-definition.com/Waclaw-Sierpinski.html
    A B C D ...
    Contact

    Beta 0.71 powered by:

    akademie.de

    PHP

    PostgreSQL

    Google News about your search term
    Waclaw Sierpinski
    Waclaw Franciszek Sierpinski Polish spelling Wacław Sierpiński March 14 October 21 ) was a Polish mathematician , known for outstanding contributions to set theory (research on the axiom of choice and the continuum hypothesis number theory , theory of functions and topology He was born in Warsaw Two well-known fractal s are named after him (the Sierpinski triangle and the Sierpinski carpet ), as are Sierpinski number s and the associated Sierpinski problem. Waclaw Sierpinski is interred in the Powazki Cemetery , Warsaw, Poland. Books about 'Waclaw Sierpinski' at: amazon.com or amazon.co.uk Note: This article from Wikipedia is made available under the terms of the GNU FDL
    Further Search within Free-Definition
    Link
    from your web site to this article with this HTML tag:
    top

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter