Geometry.Net - the online learning center
Home  - Scientists - Rudolff Christoff
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Rudolff Christoff:     more detail
  1. Christoff Rudolff: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001

41. Historia Del álgebra
Translate this page Jhon Widmann 1849.- idea los signos + y - . christoff rudolff 1525.- comienzaa usar el signo radical. Robert Recorde 1557.- introduce el signo =.
http://www.mate.com.mx/proyectos/histalgebra0002.htm
Profr. Francisco José Vara Trujillo Inicio Mapas conceptuales Historia del álgebra Comentarios: franciscovara@mate.com.mx Historia del Álgebra. Investigación realizada por los alumnos: Benitez Mendoza Omar Jair Davila Sotomayor José Danilo Montes de Oca Gil Mauricio Osorio Lama Victor Sanchez Porras Francisco Javier La evolución ha hecho que el hombre busque métodos y formas de cómo resolver sus problemas. Desde sus orígenes el hombre ha sido poseedor de la razón que lo hace superior a cualquier otra especie. Es el razonamiento el que provoca su desarrollo intelectual que dio origen a distintos lenguajes de los cuales las matemáticas son el más exacto y preciso que ha llegado a desarrollar. Las matemáticas no son más que métodos y formas del razonamiento humano que utilizan la mente del mismo como único campo de experimentación, es esto por lo que se dice que es una ciencia abstracta. El hombre al verse en la necesidad de simplificar y generalizar procedimientos que le permitieran resolver problemas creó el álgebra. Algunas definiciones de álgebra son: • Ciencia fundamental de la cantidad y su objeto es la simplificación y generalización de las cuestiones sobre los números, estudia los sistemas de operaciones que deben llevarse a cabo con las cantidades para determinar, por medio de ellas, otras desconocidas. • Ciencia cuyo objeto es simplificar y generalizar las cuestiones relativas a los números. • Rama de la Matemática con la que se obtienen generalizaciones, métodos y procedimientos matemáticos valiéndose del uso combinado de números, letra y símbolos. • Rama de la Matemática que estudia la cantidad considerada del modo más general posible.

42. Las Matemáticas En El Renacimiento
Translate this page Por su parte, el alemán christoff rudolff empleó en 1525 el símbolo actual dela raíz cuadrada, mientras que el bávaro Adam Ries (1492-1559) publicó
http://www.satd.uma.es/matap/personal/pablito/Renacimiento.html
Episodio 24: Las Matemáticas en el Renacimiento
Traducción del capítulo 24 "Mathematics in the Renaissance" de la parte I del libro
The Heritage of Thales , W.S. Anglin y J. Lambek; Springer-Verlag, 1995
con hiperenlaces a las páginas de los matemáticos mantenidas en
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/ Aparte de la adopción de los dígitos arábigos y del trabajo de unas pocas personas de talento (como Pappus y Fibonacci ), durante los siglos que prosiguieron a Diophantus no se habían producido avances significativos en Matemáticas. En los siglos XV y XVI tuvo lugar un repentino brote de actividad impulsado por el descubrimiento chino de la imprenta, la cual llegó a Europa en 1450 y propulsó a unas Matemáticas (tanto las puras como las aplicadas) que se habían quedado estancadas en los logros de tiempos ancestrales. Es conveniente recalcar la importancia de la imprenta para la difusión del conocimiento matemático. El copiado a mano de textos matemáticos requería mucho tiempo y esfuerzo. En los tiempos antiguos, de la mayoría de los textos sólo existía una copia única que se encontraba en la biblioteca de Alejandría; ésta es la razón por la cual toda la actividad matemática estuvo concentrada en un solo sitio durante unos ochocientos años. Con la llegada de la imprenta dichos textos pasaron a estar disponibles por todo el mundo civilizado y la gente podía aprender matemáticas en lugares tan distantes como Bohemia o Escocia. En este episodio y en los dos siguientes se van a presentar los avances que se dieron en esta época en las siguientes áreas: notación matemática, teoría de las ecuaciones, descubrimiento de los logaritmos, y mecánica y astronomía.

43. The Birth Of Algebra
for radix). Therefore he writes. In Germany, christoff rudolff (1499 1555) wrote a book in 1525 called simply Coss. The Italian
http://cerebro.xu.edu/math/math147/02f/algebra/algebra.html
The Birth of Algebra
Introduction: Bridging a millenium
In the year AD 312, on the eve of a battle against would-be rivals for the Roman Imperial throne, Constantine had a dream that instructed him to place the chi rho , the Christian symbol formed by superimposing the first two letters of the Greek name Christos , on the shields of his soldiers. When he won the battle and became Emperor, he issued an edict of tolerance for Christian believers. Later, on his deathbed, Constantine himself became a Christian, placing it in a position of prominence in the Empire from which it would influence the history of the Western world to this day.
In 324, Constantine moved the seat of the Empire to the Greek town of Byzantium in the east of the empire, renaming it Constantinople after himself. His was one of the last strong governments of the Roman Empire. The tenuous union of the eastern and western halves of the empire during the fourth century continued to fray, so that by the year 400 it had split in two for good. The Goths entered Rome in 476 , bringing down the Western Empire. This marks the start of the Middle Ages, when Greek culture was effectively cut off from the West. Tribal governments held sway, giving way to feudal society and the slow development over centuries of what would eventually become the familiar nation-states of Europe.

44. Part II Outline
and sixteenth centuries in Europe; examples of this development appear in Francein the work of Nicholas Chuquet, in Germany by christoff rudolff, and in
http://cerebro.xu.edu/math/math147/02f/part2/part2.html
MATH 147 Part II Outline
Ptolemy
  • Greek astronomers inherited much of their astronomy from the Babylonians. Beginning with Aristarchus (4th c.) and Eratosthenes (3rd c.), however, they looked at the cosmos as being described by geometric patterns (spherical motions) that could be recorded, measured, and predicted, rather than simply the will of the gods. Eudoxus (4th c.) developed a geocentric model that placed the earth at the fixed center of the universe. This homocentric version posited concentric spheres on which the seven planets (Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn) traveled around the earth. Apollonius (3rd c.) refined this to an eccentric model which assumed that the planetary spheres did not share the same center. This accounted for variability in brightness of the planets. Hipparchus (2nd c.) prepared the first table of chords to assist with astronomical calculation. For this he is called "the father of trigonometry". The chord of an angle is related to the modern-day sine of the angle by
crd a = 2 sin a
  • Claudius Ptolemy (2nd c. AD) wrote the

45. Neue Seite 1
Translate this page Rudio, Ferdinand (1856 - 1929). rudolff, christoff (1499 - 1545). Ruffini,Paolo (22.9.1765 - 10.5.1822). Runge, Carl David Tolme (1856 - 1927).
http://www.mathe-ecke.de/mathematiker.htm
Abbe, Ernst (1840 - 1909) Abel, Niels Henrik (5.8.1802 - 6.4.1829) Abraham bar Hiyya (1070 - 1130) Abraham, Max (1875 - 1922) Abu Kamil, Shuja (um 850 - um 930) Abu'l-Wafa al'Buzjani (940 - 998) Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843) Aepinus, Franz Ulrich Theodosius (13.12.1724 - 10.8.1802) Agnesi, Maria (1718 - 1799) Ahlfors, Lars (1907 - 1996) Ahmed ibn Yusuf (835 - 912) Ahmes (um 1680 - um 1620 v. Chr.) Aida Yasuaki (1747 - 1817) Aiken, Howard Hathaway (1900 - 1973) Airy, George Biddell (27.7.1801 - 2.1.1892) Aithoff, David (1854 - 1934) Aitken, Alexander (1895 - 1967) Ajima, Chokuyen (1732 - 1798) Akhiezer, Naum Il'ich (1901 - 1980) al'Battani, Abu Allah (um 850 - 929) al'Biruni, Abu Arrayhan (973 - 1048) al'Chaijami (? - 1123) al'Haitam, Abu Ali (965 - 1039) al'Kashi, Ghiyath (1390 - 1450) al'Khwarizmi, Abu Abd-Allah ibn Musa (um 790 - um 850) Albanese, Giacomo (1890 - 1948) Albert von Sachsen (1316 - 8.7.1390)

46. The Ship Leathley Passenger List 1753
christoffel (X) Termel, Johann Nicklaus Klein. J. christoff (X) Bremer,Caspar Ludewig Sievert. C. rudolff (+) Rechner, Johann Henrich Sievert.
http://germanroots.home.att.net/penngermanpioneers/leathley1753.html
First Name
Last Name
Any AL AK AZ AR CA CO CT DE DC FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY INTL
Locality
at Ancestry.com
The Ship Leathley Passenger List
Hamburg to Philadelphia
19 September 1753
The Ship Leathley 1753
List 202C
At the Court House in Philadelphia, Wednesday, the 19th September, 1753.
Present: William Plumsted, Esquire.
The Foreigners whose names are underwritten, Imported in the Ship Leathley, Captain John Lickley, from Hamburgh and last from Cowes in England, did this day take the usual Qualifications. [No.] 53.
Johan Henry (+) Hening Christian ( ) Shlemer Andreas (++) Foll Johann Philip Fordenbach Johan Peter (+) Koch Ludewig (X) Shmit J. Wilhelm (X) Voss J. Henry (+) Hinsey J. Diterich (X) Sehr Michael Uhl Christian (+) Shlemer J. Christian (+) Ramberg Christoff (X) Amelon Henry (X) Shroeder Johann Gottfriedt Golde Johann Stats (+) Koch Christophel Schlencker Johannes Christoph Appach Friedrich Wilhm Schlencker Harm. Alleman Frantz Henry (++) Shlencker Johans (X) Heneman Christoffel (X) Termel Johann Nicklaus Klein J. Christoff (X) Bremer

47. Geschichte_algebra
Translate this page Fleiß an. 18. christoff rudolff, geboren um 1500 in Jauer in Schlesien.Er studierte an der Universität Wien. Sehr bekannt wurde
http://home.arcor.de/sjschaper/geschi1.htm
Geschichte von Arithmetik und Algebra
2. Babylonier
4. Die Chinesen und die Inder
5. Maya
Zeitalter der Griechen
6. Pythagoras
Die Quadratzahlen fanden sie z.B. durch a) b)
Auch bildeten sie aus zwei Zahlen a und b das arithmetische Mittel (a + b)/2, das 2
geometrische Mittel Wurzel(ab), das harmonische Mittel (2ab)/(a+b)
7. Euklid
8. Archimedes
9. Heron von Alexandria
10. Diophant
An der Schwelle des Mittelalters (Zeit der Romanik und der Gotik)
11. Die Inder
12. Die Araber 13. China 14. Leonardo von Pisa
Zeitalter der Renaissance
15. Nikolaus Oresme
Die Cossisten
"la cause = das Ding oder die Sache" , italienisch "cosa" ) nannte man die Algebra jetzt "Cossisten" 17. Adam Riese 18. Christoff Rudolff 19. Michael Stifel "Arithmetica integra" 20. Francis Vieta 21. Simon Stevin
Aufschwung in den Naturwissenschaften
23. Der englische Mathematiker John Napier, genannt Neper Henry Briggs (1561/1630) auf die Basis 10 umgearbeitet, so dass sie praktisch verwendbar wurde. 24. Edmund Gunter William Oughtred (1575/1660) die heutige Form mit zwei gleitenden Skalen schuf.

48. 1498 A.D.
operation in 1514. The first publication with the radical sign init was christoff rudolff s, DieCoss, in 1525. Probably it was
http://faculty.oxy.edu/jquinn/home/Math490/Timeline/1498AD.html
1489 A.D.
First Appearance in print of "+" and "-"
"Using notation, you can collect ideas and experiences that very moment you realize, 'this is important. I want to remember this…' and you can do this with out sacrificing the flow of the current work." This quote by an unknown person directly addresses the connivance of having standard notation to use in mathematical works. Besides convenience for ones own self, it is crucial to have standard notation in order to effectively and efficiently convey information to others. Amazingly enough, standardization of symbolic notations took around 300-400 years! Just to give you an idea of what was to come in the future of standardization of notations, here were some further developments that came later. He probably wasn't the first, but Vander Hoecke, a Dutch mathematician, used the + and - signs as symbols of algebraic operation in 1514. The first publication with the radical sign in it was Christoff Rudolff's, "DieCoss," in 1525. Probably it was used because the symbol resembled an r for radix. Francois Viete (born in 1540) influenced symbolic algebra by using vowels for unknowns and consonants for known values in his equations. Prior to Viete people used different letters or symbols for various powers of quadratics, Viete used the same letter. For example: A was written A; A was written A quadratum, or A q for short; A

49. Lebensdaten Von Mathematikern
Translate this page Georg (1816 - 1887) Roth, Leonhard (1904 - 1968) Routh, Edward (1831 - 1907) Rudio,Ferdinand (1856 - 1929) rudolff, christoff (1499 - 1545) Ruffini, Paolo
http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
Diese Seite ist dem Andenken meines Vaters Otto Hebisch (1917 - 1998) gewidmet. By our fathers and their fathers
in some old and distant town
from places no one here remembers
come the things we've handed down.
Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
Abel, Niels Henrik (5.8.1802 - 6.4.1829)
Abraham bar Hiyya (1070 - 1130)
Abraham, Max (1875 - 1922)
Abu Kamil, Shuja (um 850 - um 930)
Abu'l-Wafa al'Buzjani (940 - 998)
Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843)

50. Êâàäðàòíûé êîðåíü èç 2
The history of the famous sign ? goes back up to 1525 in a treatise named Cosswhere the German mathematician christoff rudolff (14991545) used a similar
http://algolist.manual.ru/maths/count_fast/sqrt2.php
Path:
numbers.computation.free.fr

There are certainly people who regard as something perfectly obvious but jib at . This is because they think they can visualise the former as something in physical space but not the latter. Actually is a much simpler concept. Edward Charles Titchmarsh
Introduction
The constant 2 is famous because it's probably one of the first irrational numbers discovered. According to the Greek philosopher Aristotle (384-322 BC), it was the Pythagoreans around 430 BC who first demonstrated the irrationality of the diagonal of the unit square and this discover was terrible for them because all their system was based on integers and fractions of integers. Later, about 2300 years ago, in Book X of the impressive Elements, Euclid (325-265 BC) showed the irrationality of every nonsquare integer (consult [ ] for an introduction to early Greek Mathematics). This number was also studied by the ancient Babylonians. The history of the famous sign goes back up to 1525 in a treatise named Coss where the German mathematician Christoff Rudolff (1499-1545) used a similar sign to represent square roots.

51. UPF - Àrea D'Història De La Ciència
Universität der Bundeswehr München The reduction of theoretically possible 27 typesof quadratic equations to eight by christoff rudolff mirrors the concern
http://www.upf.es/huma/hciencia/abstracts.htm
UPF - Àrea d'Història de la Ciència presentació personal docent i investigador línies de recerca docència    activitats    enllaços d'interès
International Workshop
"Science and Power during the Cold War in the European Periphery"
Barcelona, November 1-3, 2001
Abstracts:
The contributions of German cossists in the 16th and early 17th century
The reduction of theoretically possible 27 types of quadratic equations to eight by Christoff Rudolff mirrors the concern about the domain of admissible (positive) values of the roots. When Michael Stifel a generation later had reduced the solution of these eight different types of quadratic equations to one single rule he lived up to the expectations of the clients of German reckoningmasters who were accustomed to receive recipelike algorithmic rules for the solution without any proof or even hint of an understanding. This form of algorithmic rules for the solution of a problem is still preserved in the rules for finding the tangent or extreme values of Fermat. An interesting case to test the extension of the domain of admissibles values for the roots of an equation is the reception of Cardano's rules for the solution of cubic equations in Germany. It can be shown that Michael Stifel and Johannes Junge, who both treated cubic equations, modified Cardano's rules in a way that the roots fell still in the domain of Euclidean irrationalities. Only in the early 17th century cossists like Johannes Faulhaber and Peter Roth, to whom we owe one form of the fundamental theorem of algebra, accepted radicals with exponent three, albeit no complex solutions like Bombelli in Italy. In Faulhaber's

52. ¥³.The Sixteenth-Century Mathematics Of Italy: Commercial Mathematics
1521. His disciple, christoff rudolff used the radical symbol(v)including (+), ( in his bool about algebra in 1525. He used
http://seoul-gchs.seoul.kr/~contest/tq/mathematics/temh2400.htm
HOME Back Graphic Version ¥³.The Sixteenth-Century Mathematics of Italy : Commercial Mathematics ¢º Characteristic of The 16th Century Mathematics. ¢º Arrangement of The Symbols ¢ºCubic and Quartic Equations ¡ß Characteristic of The Sixteenth-Century Mathematics ...
In summarzing the mathematical achievements of the sixteenth century, We can say that symbolic algebra was well started, computation with the Hindu-Ariabic numerals became standardized, decimal fractions were developed, the cubic and quartic equations were solved and the theory of equations generally advanced, negative numbers were becoming accepted trigonometry was perfected and systematized, and some excellent tables were computed. The stage was set for the remarkable strides of the next century.

¡ß Arrangement of The Symbols Renaissant algebra started with necessity for commerce and arrangement of algebraic symbols.
¡Ý Plus(+) and Minus(-) : These symbols appeared in a book about arithmetic written by John Widmann - Called father of arithmetic - for the first time in 1489.
At first, these symbols expressed 'surplus', and 'insufficiency' but later it meant 'addition'and 'subtraction'

53. Historia Matematica Mailing List Archive: [HM] Peter Roth
Nuremberg philomath who owned manuscripts from Peter Roth, amongst them one whiththe solutions of all the problems contained in the Coss of christoff rudolff.
http://sunsite.utk.edu/math_archives/.http/hypermail/historia/sep98/0078.html
[HM] Peter Roth
Prof. Dr. Ivo Schneider Ivo.Schneider@UniBw-Muenchen.de
Fri, 18 Sep 1998 19:14:20 +0200 (MET DST)
Dear members of the list,
I am concerned with details of the life and manuscripts including letters
of Peter Roth of whom very little is known. I can provide you with the
following informations: Roth worked in the German city Nuremberg as a
reckoningmaster until his death in 1617. Nothing is known about the place
and date of his birth.
He published in 1608 a book in Nuremberg the full title of which is:
Peter Roth, Arithmetica Philosophica, Oder sch"one newe wolgegru"ndte Vberauss
Kunstliche Rechnung der Coss oder Algebrae/ In drey vnterschiedliche Theil
getheilt. Im I. Theil werden dess hochgelehrten/ fu"rtrefflichen vnd weitberu"hmbten Herrn D. Hieronymi Cardani, Mathematici, Philosophi vnd Medici dreyzehn

54. Lesson Six
Radicals The word radical comes from a Latin word radix, meaning root. A Germanmathematician named christoff rudolff who first used it in 1525 invented it.
http://www.personal.psu.edu/faculty/j/x/jxt18/Math21_WEB/Lesson6/lesson_six.htm

55. Aa, Personal , Ahmet Kaya ,Þebnem Ferah , Göksel , Ebru Gündeþ
Rota, GianCarlo (1420*) Roth, Klaus (706*) Roth, Leonard (97*) Routh, Edward (152)Rudin, Mary (1857*) Rudio, Ferdinand (268*) rudolff, christoff (172) Ruffini
http://www.newturk.net/index111.html

English
Turkish German French ... Spanish
Top20 Free 1. Sexy toplist 3. Hitboss 4. Top20 Free 6. Webservis 7. ErciToplist 8. Sorf Toplist
DO YOU WANT TO GET A FREE ALBUM
Than click here. This is the easiest and free way. Create your own digital foto album. Click here and download it free.
FLIPALBUM creates wicked 3D page-flipping photo album instantly and automatically. ALL FUN! NO HASSLE! Get your FREE TRIAL DOWNLOAD!

HOVERFLY-2 INDOOR HELICOPTER
Hoverfly is a great little helicopter. It comes attractively finished and ready to fly. It’s small, tough and quiet - and it flies indoors. Yet it handles just like its bigger brothers. You have a web site and you want to earn money, then click here. We recommend you the Otherlandtoys.co.uk, Commission Junction Program
WWW Google Altavista
document.write(""); document.write(""); document.write(""); document.write("");
var isjs=0, site=665, icon=3;
var id = 100 document.write(""); var isjs=0, site=1780, icon=1; Search Web Auctions Forums Jobs for Free Mail UK Banner X Rate this site at CMATHER.COM Top 100! 10- Best 1- Worst Rate this site!

56. TIMELINE 16th CENTURY Page Of ULTIMATE SCIENCE FICTION WEB GUIDE
a book on Cartography in 1524 1522 The first Arithmetic book published in England,by Cuthbert Turnstall 1525 Die Coss by christoff rudolff, one of the
http://www.magicdragon.com/UltimateSF/timeline16.html
TIMELINE 16th CENTURY
Return to Timeline Table of Contents

Return to Ultimate SF Table of Contents
TIMELINE 16th CENTURY
May be posted electronically provided that it is transmitted unaltered, in its entirety, and without charge. What were Ariosto and Cyrano doing on the Moon, and how did they get there? We examine both works of fiction and important contemporaneous works on non-fiction which set the context for early Science Fiction and Fantasy. There are hotlinks here to authors, magazines, films, or television items elsewhere in the Ultimate Science Fiction Web Guide or beyond. Over 58 kilobytes in length. Most recently updated: 24 December 2003
16th Century
Executive Summary of the Century Major Books of the Decade 1500-1510 Major Books of the Decade 1510-1520 Major Books of the Decade 1520-1530 ... Where to Go for More : 51 Useful Reference Books
Executive Summary of the Century
The 16th Century was a time of great exploration, religious turmoil, political turmoil, scientific advances, and extraordinary literature. EXPLORATION Ferdinand Magellan 's expedition circumnavigated the world. He himself died on the mission, which started 1519. The only surviving ship to return was that commanded by Basque captain

57. Hansestadt Rostock Hausgeld-Register 1688 Steuer Bürgerschaft
Translate this page Hanß Borkholt 1-0. Mattiaß Möller. Hinrich rudolff Bobst 4-0. Clauß Münster2-0. Johan Föge 2-0. christoff Hartigs Witwe. Jacob Kohlhagen. Friedrich Schröder.
http://www.vigerust.net/by/rostock1688_hausgeld.html
Rostocker Hausgeld-Register der 1.-11. Fahne 1688
kane.benkestokk.teiste forlag (Tore Hermundsson Vigerust)
, Rostock/Oslo 2001-2002.
, Nr. 1.15.2629: Hausgeld-Register der 1.-11. Fahne, Band 3, 1687-1689, tilleggshefte [Zusatzhefte] Hausgeldt De Anno 1688 : zu 1.15.2629. Se sihe Hausgeldt De Anno 1688
Die 1 Fahn die 1 Corp: Johan Christoff Folsch 4-0 Jochim Winter tagl Michel Schunemacher 2-0 Frantz Stolt 2-0 Mons: Redeker 4-0 Hinrich Bitter 2-0 Jurgen Schwabe 3-0 Jochim Ryckman 3-0 itwe Michel Maan 1-0 itwe Jochim Hydde Hinrich Harder Johan Stygman 2-0 Johan Turitz 2-0 Hinrich Pegelowes W itwe Hinrich Westpfahl Michel Wegener itwe Friedrich Schultz 4-0 itwe Christian Nuchtern 2-0 Hinrich Storm
Die 2 Corp: itwe Christoffer Hydde tagl Hinrich Kannenberg Berent Schorff 2-0 Hinrich Wolter 2-0 Jochim Schrufer Christian Mundt 2-0 Hinrich Buneman 2-0 Carsten Brandt 2-0 Jacob Degener 2-0 Hinrich Dunnebehr 2-0 Jochim Strufing Jochim Behrensche 1-0 Jochim Gylow Otto Wilhelm Rodenburg 4-0 Jochim Viedt 3-0 Jurgen Rander Michel Tacke 1-0 Johan Mundt Jochim Kluett 1-12 Heyn Ulrich Hinrich Papeke tagl Carsten Harder Sebastian Wilbrant 2-0
Die 3. Corp:

58. Hansestadt Wismar: Türckensteuer 1689 St. Georg Kirchspiel 1
Translate this page Tohmas Beutiche 1. Jochim Drefahl 5. rudolff Wagener 4. Hans Oldenborgs witwe 60. Lubsche-Straß1. christoff Gröningk 20. Jochim Blumentahl 30. Bartelmes Dümmer 2.
http://www.vigerust.net/by/wismar1689_georgkirchspiel1.html

kane.benkestokk.teiste forlag (Tore Hermundsson Vigerust)
, Wismar/Oslo 2002.
Ausgabe 05.08 2002. Gjengitt etter original i [Wiedergegeben nach der Original in] Archiv der Hansestadt Wismar, Abteilung III, Repositur 1, Aa, Ratsakten (Stadtverwaltung bis 1945/50), Tit. XI ( Fol. 23-32: Register von Georg Kirchspiehl 1689. Jacob Burmeister 3 Johan Neutman Schunhoff 2 Claus Meincke, grutzmuller 5 Johan Andreas Raub, im Ewig leben 5 Johan Panck, Vigilant 2 Claus Tengel 8 Hans Broder 2 Christian Hase 1 Hans Dreyvert, Neper 6 Andreas Diedrichs 2 Jochim Dabelman 3 Gotfried Heyden 2 Jacob Schmidt, Tischer 4 Jacob Rode, Schnider 2
Daniel Eylers witwe 1 Brondanus Holst 4 Caspar Liebelt 3 Michell Evert 2 Johann Angerman 3 Hans Niebuhr 3
Johann Vitter (N-?) 4 Daniel Pierstorff 60 Bastian Walther 2 Andreas Schooff 9 Hinrich Lubke 12 Jochim Frahm 8 Peter Vulff 2 Claus Zahrens 10 Hinrich Stehe 3 Friedrich Vookk 4 Diedrich Frick 7-8 Jochim Schomacher 12 Andreas Roggeman 6 Jochim Roggeman 30 Claus Brummer 3 Caspar Furst ? 1 N. Lustschowen witwe 6
Auff dem Schilde Baltzer Vaahl 6 Berendt Lohman 2 Detloff Hase 4
Frantz Spilter, schlecht 1

59. Human Indexes Of My Books On Mathematics; Ru Re Ro In Japanese
6, II.6, ?, ?3, ?, ?1.4.1, 2.2.5, 3.9.1, ?, ?7, 11, 14, ?2? ?(christoff rudolff, 1500?1545).
http://www.com.mie-u.ac.jp/~kanie/tosm/humanind/jinmeir3.htm
TOSMŽOd‚̃z[ƒ€
w‰ðÍ‹³’öx
w”—‰ðÍ‚̃pƒCƒIƒjƒA‚½‚¿x w”Šw–¼ŠˆÄ“àx ... w“V‘‚̏ؖ¾x
@l–¼õˆø@‚é‚ê‚ë
l–¼õˆø‘–ÚŽŸ ƒ‹ƒ”ƒFƒN ƒ‹ƒ”ƒFƒŠƒG ƒ‹[ƒJƒX ...
ƒgƒbƒv

(Louis XIV, 1638-1715.)
ƒ‰ƒCƒvƒjƒbƒc
‚̓GƒWƒvƒgª•ž‚ð‚»‚»‚Ì‚©‚µ‚ɃpƒŠ‚É”hŒ­‚·‚éD‰¤‚Ƃ̉‚ÍŽÀŒ»‚µ‚È‚©‚Á‚½‚ªCƒ‰ƒCƒvƒjƒbƒc‚Í ƒzƒCƒwƒ“ƒX ‚ƁC‚»‚µ‚Đ”Šw‚Æ’m‚荇‚¢C‘å—¤‚Ì”÷Ï•ªŠw‚ª¶‚Ü‚ê‚éD@ ƒgƒbƒv
ƒ‹ƒ”ƒFƒN (William Judson LeVeque, 1923.8.9-)
ƒgƒbƒv

ƒ‹ƒ”ƒFƒŠƒG (Urbain Jean Joseph Le Verrier, 1811.3.11-1877.9.23.)
@ƒtƒ‰ƒ“ƒXCƒTƒ“Eƒ[‚ɐ¶‚Ü‚êCƒpƒŠ‚ÉŽ€‚·D
@1846”N J.C.ƒAƒ_ƒ€ƒY
@“–Žžƒ‹ƒ”ƒFƒŠƒG‚Ì“¯—»‚Í u”ނ̓yƒ“‚̐æ‚Ő¯‚ðŒ©‚Â‚¯‚½DŒvŽZ‚̗͈ȊO‚Ì‚Ç‚ñ‚È“¹‹ï‚àŽg‚킸‚Ɂv ‚ÆŒ¾‚Á‚½‚Æ‚¢‚¤D @1855”N‚ɐ…¯‚Ì‹ß“ú“_‚̈ړ®‚ª ƒjƒ…[ƒgƒ“ ‚Ì—˜_‚Å‚Ì—˜_’l‚æ‚è‘å‚«‚¢‚±‚Æ‚ð”­Œ©D‚±‚ê‚ðà–¾‚·‚邽‚߂ɐ…¯‚Ì“à‘¤‚ÉŒ©‚¦‚È‚¢¯Vulcan‚ðC‚Ü‚½Œã‚ɂ͏¬˜f¯‘Ñ‚ð‘z’肵C‚»‚ê‚ð’T‚µ‘±‚¯‚½D‚µ‚©‚µC”Þ‚ÌŽ€Œã1915”N‚É ƒAƒCƒ“ƒVƒ…ƒ^ƒCƒ“ ‚̈ê”Ê‘Š‘ΐ«—˜_‚́C—]•ª‚È•¨‘Ì‚ð•K—v‚Æ‚µ‚È‚¢à–¾‚ð—^‚¦‚éD@@ ƒgƒbƒv ƒ‹[ƒJƒX (Francois Edouard Anatole Lucas, 1842.4.4-1891.10.3). @ƒtƒ‰ƒ“ƒXCƒAƒ~ƒAƒ“iƒpƒŠ‚Ì–k•û‚Ɉʒu‚·‚éH‹Æ“sŽsj‚ɐ¶‚Ü‚êCƒpƒŠ‚ÉŽ€‚·B ƒ‹ƒ”ƒFƒŠƒG ƒƒ‹ƒZƒ“ƒk ”M -1 ‚ª‘f”‚Å‚ ‚邱‚Æ‚ðŽ¦‚·DƒRƒ“ƒsƒ…[ƒ^‚ðŽg‚킸‚ÉŽ¦‚³‚ꂽÅ‘å‚Ì‘f”‚Å‚ ‚éD‚à‚¿‚ë‚ñ M = 170141183460469231731687303715884105727 ‚ðŽÀÛ‚ÉŒvŽZ‚¹‚¸‚ÉŽ¦‚·‚Ì‚Å‚ ‚éD‚±‚Ì‘f”‚ɑ΂·‚郋[ƒJƒXEƒeƒXƒg‚Í1930”N‚É ‚³‚ꂽD (1882-94)‚Í‚±‚Ì•ª–ì‚ÌŒ“T‚É‚È‚Á‚Ä‚¢‚éD @@ ƒgƒbƒv ƒ‹ƒWƒƒƒ“ƒhƒ‹ (Adrian Marie Legendre, 1752.9.18-1833.1.10).

60. La Page Des Mathematiques Au Lycee Claude Fauriel, Classes Preparatoires, Saint
Translate this page christoff rudolff (1499-1545) introduit le symbole pour désignerla racine carrée. François Viète (1540-1603) polynôme.
http://mathematiques.fauriel.org/doc-mots.html

Accueil
Autres disciplines
Accueil
MP ... Documents
Les mots mathématiques
et transcendant aux mots et fonction nombres impossibles nombres imaginaires nombres imaginaires nombres complexes touchantes sont devenues des tangentes . Les fluxions , et les fonctions synectiques holomorphes squelette , de ossuaire murs , des appartements et des immeubles ... Charles Ehresmann, inventeur des mots : fibre, jet, germe, tige injection injectif en 1952 dans les Foundations of algebraic topology surjectif surjection en 1964 dans les Foundations of algebraic topology bijection biunivoque n mots
En tout bien tout honneur... Tout commence avec : Pythagore (580-520 av. J C) Pythagoriciens classification des nombres : nombres pairs, impairs, impair-pair, nombres pairement pairs (puissances de 2), pair-impair (i.e. de la forme 2(2m+1)), impair-pair (i.e. de la forme 2 n+1
: puissance : logique. Euclide (365-300 av. J C) oper edei deiksai q.e.d., quod erat demonstrandum, : arbelos. Apollonios de Perge (262-190 av JC) : ellipse, parabole et hyperbole, cylindre, asymptote (probablement) Al Khowarizmi (790-850) Fibonacci (1170-1250) : addition, extraction (1201

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 3     41-60 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter