Geometry.Net - the online learning center
Home  - Scientists - Reidemeister Kurt
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Reidemeister Kurt:     more books (21)
  1. Die Unsachlichkeit der Existenzphilosophie: Philosophie im Lichte mathematischer Kritik. Neun kritische Aufsätze (German Edition) by Kurt Reidemeister, 1970-11-01
  2. Knot Theory by Kurt Reidemeister, 1983-09
  3. Hilbert. Gedenkband: David Hilbert: Naturerkennen und Logik. Königsberg 1930 (German Edition)
  4. Vorlesungen über Grundlagen der Geometrie (Grundlehren der mathematischen Wissenschaften) (German Edition) by Kurt Reidemeister, 1968-01-01
  5. Figuren by Kurt Reidemeister, 1946-01-01
  6. Die Unsachlichkeit der Exiytenzphilosophie. Vier kritische Aufsatze by Kurt REIDEMEISTER, 1954
  7. Raum und Zahl. by Kurt REIDEMEISTER, 1957
  8. Vorlesungen Über Grundlagen Der Geometrie; Ueber, Uber by Kurt Reidemeister, 1968-01-01
  9. Einfuhrung in die kombinatorische Topologie (AMS Chelsea Publishing) (German Edition) by Kurt Reidemeister, 1950-01-01
  10. Vorlesungen uber Grundlagen der Geometrie by Kurt Reidemeister, 1930-01-01
  11. Einfuhrung in Die Kombinatorische Topologie by Kurt Reidemeister, 1950
  12. Uber die relativklassenzahl gewisser relativquadratischer zahlkorper by Kurt Reidemeister, 1921-01-01
  13. das exakte denken der griechen: beiträge zur deutung von euklid, plato, aristoteles by Kurt Reidemeister, 1949
  14. Raum und Zahl (German Edition) by Kurt Reidemeister, 1957-01-01

41. Mathematik-Visionen - Literatur
Translate this page pdf. reidemeister, kurt Mathematik und Logik bei Plato, Leipzig,Berlin 1942. Reinhardt, Karl Kosmos und Sympathie, München 1926.
http://www.tydecks.info/online/math_multi_fasch_lit.html
Mathematik-Visionen aus der Zeit des Faschismus
Literaturhinweise:
Aristoteles: Philosophische Schriften, 6 Bd., Hamburg 1995 Bachmeier, Helmut und Thomas Rentsch (Hg.): Poetische Autonomie?, Stuttgart 1987 Baeumler, Alfred: Bachofen, der Mythologe der Romantik,
Becker, Oskar: Mathematische Existenz, Halle 1927 Becker, Oskar: Grundlagen der Mathematik, Frankfurt 1975 Bernal, John Desmond: Wissenschaft, Bd. 1 + 2, Reinbek 1970 Bieberbach, Ludwig: Stilarten mathematischen Schaffens,
in: Sitzungsberichte d. Preuss. Akad. d. Wiss, Berlin 1934, 351-360 Bloch, Ernst: Das Prinzip Hoffnung, 3 Bd., Frankfurt 1969 Blumenberg, Hans: Paradigmen zu einer Metaphorologie, Frankfurt 1998 Blumenberg, Hans: Die Genesis der kopernikanischen Welt, Frankfurt 1996 Blumenberg, Hans: Arbeit am Mythos, Frankfurt 1996 Blumenberg, Hans: Die Lesbarkeit der Welt, Frankfurt 1986 Brod, Max: Tycho Brahes Weg zu Gott, Berlin 1947 Brumlik, Micha: Die Gnostiker, Frankfurt 1992 Buber, Martin: Die chassidische Botschaft, Heidelberg 1952 Cassirer, Ernst: Substanzbegriff und Funktionsbegriff, Berlin 1923 Cassirer, Ernst: Philosophie der symbolischen Formen, 3 Bd., Berlin 1923 - 1929

42. Knot Theory
kurt reidemeister showed in 1932 that any diagram of a knot can be turned intoany other diagram of the same knot using a kit of 3 moves called the
http://f2.org/maths/kt/
Up to Home Maths Site Map Text version
Knot Theory
Fred Curtis - Mar 2001] This page is a tiny introduction to Knot Theory. It describes some basic concepts and provides links to my work and other Knot Theory resources. What is Knot Theory? My Interests Old papers I'm typing up References
What is Knot Theory?
Knot theory is a branch of mathematics dealing with tangled loops. When there's just one loop, it's called a knot . When there's more than one loop, it's called a link and the individual loops are called components of the link. A picture of a knot is called a knot diagram or knot projection . A place where parts of the loop cross over is called a crossing . The simplest knot is the unknot or trivial knot , which can be represented by a loop with no crossings. The big problem in knot theory is finding out whether two knots are the same or different. Two knots are regarded as being the same if they can be moved about in space, without cutting, to look exactly like each other. Such a movement is called an ambient isotopy - the ambient refers to moving the knot through 3-dimensional space, and

43. American Mathematical Society
Murty, Maruti. Introduction to padic Analytic Number Theory $39.00. reidemeister,kurt. Einführung in die kombinatorische Topologie $16.00. Saccheri, Girolamo.
http://alunos.cc.fc.ul.pt/~l22402/_ams.org.htm
Bachmann, Paul Banach, Stefan
  • Birkhoff, Garrett Dirichlet, Peter Ford, Walter Gauss, J. Karl
  • Hardy, Godfrey Hausdorff, Felix Hawkins, Thomas Hecke, Erich
  • Hilbert, David [; Ackermann, Wilhelm] Koch, Helmut Krantz, Steven Lambek, Joachim Lebesgue, Henri
  • 44. Bücher Der Bibliothek Der Kristallographie Alphabetisch Nach
    Translate this page f. Kristallographie Deskriptoren BIOGRAPHIE COURANT,RICHARD reidemeister, kurtJahr 1932 Titel Einfuehrung in die kombinatorische Topologie / kurt
    http://www.dcb.unibe.ch/cgi-bin/biblioneu/searchkrist.pl?autor=R

    45. ISBN.pl - Grundlagen
    Translate this page reidemeister, kurt - Grundlagen Der Geometrie very good condition HARDCOVERPreis US$ 72.45 - mehr info Buchposition USA Siehe auch mehr Angebote.
    http://de.isbn.pl/747-6-Elementary.html
    English Deutsch Fran§ais Kategorie:
    Anthologien
    Architektur Belletristik Comics ... ISBN.pl Stichtwort: Autor: Titel: ISBN: Preisbereich: zu Buchposition: Grossbritannien Irland Deutschland Frankreich USA Resultate 121-140 von 500 THOMIN, ERNST - GRUNDLAGEN DES BITTGEBETES
    Thomin, Ernst, Grundlagen des Bittgebetes. Diss. M¼nster 1912. 8, 76 S. OU. (leicht randgebr¤unt).
    Publizierte:
    Preis: EUR 21.00 - mehr info
    Buchposition: Deutschland
    Alfred Schiffb¤umer - Grundlagen der Narkose

    2407 Grundlagen der Narkose, Alfred Schiffb¤umer,, 9,90 Euro - gerne k¶nnen Sie auch direkt bestellen unter info@interfloh.de
    Preis: EUR 9.90 - mehr info
    Buchposition: Deutschland
    M. Peter - Grundlagen der Textilveredelung
    3474 Grundlagen der Textilveredelung, M. Peter, Dipl. ? Chemiker Riehen, 9,90 Euro - gerne k¶nnen Sie auch direkt bestellen unter info@interfloh.de Preis: EUR 9.90 - mehr info Buchposition: Deutschland G¼nter Petrahn - Grundlagen der Vermessungstechnik 51k81 Grundlagen der Vermessungstechnik, G¼nter Petrahn, Cornelsen Verlag, 1999, 327 Seiten, gr¼ner Gummieinband, 20,90 Euro - gerne k¶nnen Sie auch direkt bestellen unter info@interfloh.de Preis: EUR 20.90 -

    46. Auteur - Reidemeister, Dr. Kurt
    Translate this page Auteur reidemeister, Dr. kurt, 1 document trouvé. Ajouter au panier,Imprimer, Envoyer par mail, Liste détaillée. Ouvrage Einführung
    http://bibli.cirm.univ-mrs.fr/Auteur.htm?numrec=061042746922450

    47. Dichtungen - Stéphane Mallarmé, Kurt Reidemeister
    Translate this page Dichtungen - Stéphane Mallarmé, kurt reidemeister. Preis EUR 0,00Führen wir nicht oder nicht mehr - jetzt gebraucht vorbestellen.
    http://www.immer-einkaufen.com/cat-1103172/Bücher/Kategorien/Fachbücher/Ro

    48. Techniques Of Distinguishing
    kurt reidemeister proved that if the knot is represented by two distinct projectionsthere has to be a way in which any combination of the reidemeister moves
    http://www.mapleapps.com/categories/mathematics/Knot theory/html/knotdis.htm
    Techniques of Distinguishing Knots There are some techniques employed which help us distinguish one knot from another or even help us in coming to a safe conclusion that the given knot is infact the unknot. The following are the types of methods or techniques used :- Reidemeister Moves A Reidemeister move is one of the ways in which the projection of the knot can be changed by changing the relation between the crossings. There are three Reidemeister moves that are defined and used in Knot Theory. The First move allows to put in or take out a twist in the string. The second move is to either add two crossings or to remove two crossings. The third move allows to slide a strand from one side of the crossing to the other in order to help either entangle the knot or to get from one projection of the knot to the other. All the Reidemeister moves can be seen in the following figure. Type 1: Reidemeister Move Type 2: Reidemeister Move Type 3: Reidemeister Move One thing to note in the above method is that even though by every Reidemeister move we make on the knot it changes the projection of the knot but it does not in any way change the knot represented by this projection. These Reidemeister moves can be performed on any knot given. Kurt Reidemeister proved that if the knot is represented by two distinct projections there has to be a way in which any combination of the Reidemeister moves can be performed on one projection to get to the other. In the next example, the first part shows two different projections of the same knot and how using Reidemeister moves we can get from one projection to the other.

    49. Arte - Architettura
    Translate this page ecc. € 70,00. 636. reidemeister, kurt Raum und Zahl. Berlin, Springer1957. 8° di pp. VIII-152 con 31 figg., br. € 18,00. 637.
    http://www.libri-antichi.com/montenegro/94scienze.htm

    HOME
    Scienza / Tecnica
    AA.VV.: L’uomo nello spazio. A c. di M.L. Astaldi, scritti di E. Servadio, E. Diamond, G. Gallarati, U. Maraldi, ecc. Firenze, Sansoni (I problemi di Ulisse) 1962. 8° di pp. 143, br. BARTOLOMEO da Parma: I primi due Libri del "Tractatus Sphaerae" di Bartolomeo da Parma astronomo del secolo XIII. Pubblicati secondo l’unico manoscritto sincrono della Biblioteca V. Emanuele da Enrico Narducci. Roma 1885. 4° di pp. 174 con un facsim. f.t. e 19 figg., br. Estr. da Bullettino di Bibl. e Storia delle scienze matematiche e fisiche. BORN, Max: Moderne Physik. Sieben Vorträge über Materie und Strahlung. Berlin, Springer 1933. 8° di pp. VII-272 con 95 figg., ril. CECCATO, Silvio: Cibernetica per tutti. 1 - 2. A c. di G. Barosso e V. Giuliani e B. Zonta. Milano, Feltrinelli (UE) 1970. 2 voll. in 16° di pp. 283, 238, br. DONADT, Alfred: Das Mathematische Raumproblem und die Geometrischen Axiome. Leipzig, J.A. Barth 1881. 8° di pp. 68, br.

    50. Search Results For Kurt Lewin - Encyclopædia Britannica
    kurt Werner Friedrick reidemeister University of St.Andrews Biographical sketchof this German mathematician known for his contributions to number theory
    http://www.britannica.com/search?query=kurt lewin&fuzzy=N&ct=igv&start=6&show=10

    51. Members Of The School Of Mathematics
    Translate this page REGEV, Oded, 2001-03. REICH, Edgar, 1954-55. REID, William T. 1936-37.reidemeister, kurt W. 1948-50. REIDER, Igor, 1988-90. REIMER, David, 1996-97.
    http://www.math.ias.edu/rnames.html
    RABIN, Michael O. RACINET, Georges RADEMACHER, Hans RADER, Cary B. RADJAVI, Heydar RADÓ, Tibor RÅDSTRÖM, Hans V. RAGAB, Fouad M. RAGHAVAN, Srinivasacharya RAGHUNATHAN, Madabusi S. RALLIS, Stephen J. RAMACHANDRA, Kanakanahalli RAMACHANDRAN, Doraiswamy RAMADAS, T.R. RAMAKRISHNAN, Dinakar RAMANAN, Sundararaman RAMANATHAN, Annamala RAMANATHAN, K. Gopalaiyer RAMARÉ, Olivier RAMÍREZ de ARELLANO, Enrique RAMSEY, James RAN, Ziv RANDALL, Dana RANDELL, Richard C. RANDELS, William C. RANDOL, Burton S. RANDOLPH, John F. RANGACHARI, Sundaravaradan S. RANICKI, Andrew A. RAO, Malempati M. RAO, R. Ranga RAO, Ravi A. RAPHAEL, Pierre RAPOPORT, Michael RASMUSSEN, Jacob RATCLIFFE, John G. RAUCH, Harry E. RAUCH, Jeffrey RAVENEL, Douglas C. RAY, Daniel B. RAYMOND, Frank A. RAYNAUD, Michel RAZ, Ran RAZBOROV, Alexander READDY, Margaret REDDY, Alru Raghuram REDDY, William L. REEB, Georges REES, Elmer G. REES, Mary S. REGEV, Oded REICH, Edgar REID, William T. REIDEMEISTER, Kurt W. REIDER, Igor REIMER, David REINER, Irving REINGOLD, Omer REINHARDT, William N. REITER, Hans J. REMMERT, Reinhold

    52. Joachim Arlt
    Translate this page der Schola Cantorum Basiliensis Peter reidemeister Andere Bücher von Peter reidemeister, Wulf Arlt Andere Bücher von Wulf Arlt , kurt Deggeller Andere
    http://www.buch-verzeichnis-online.de/a/Peter_Arlt.html

    Bücher
    Musik DVD Video ...
    Hörbücher

    EUR 49,00 Bauplanung mit DIN-Normen
    Joachim Arlt , Peter Kiehl
    Teubner Verlag, April 1995
    EUR 50,11 Coherent Femtosecond Spectroscopy of Exciton-Continuum Interaction in Semiconductors
    Sebastian Arlt , Henry Baltes , Peter Günter , Ursula Keller
    Hartung-Gorre, Wolfgang
    EUR 39,90 Ronald Paris, Malerei, Wirklichkeit und Annäherung
    Ronald Paris , Peter Arlt , Erhard Frommhold EUR 14,00 Bewerber/innen richtig trainieren Claudia Schmidt , Susanne Kiupel , Peter Arlt Hiba, August 2002 EUR 10,74 Modellversuche zur Lehrerfort- und weiterbildung. Bericht über eine Auswertung. Wolfgang Arlt , Peter Döbrich , Gerhard Lippert Klett-Cotta, Stgt., August 1988 EUR 15,00 Nepomuk treffen Nepomukkis Peter Arlt , Marie Kaps Resistenz-Verlag EUR 19,80 Sieben gewöhnliche Orte Peter Arlt Trauner, Rudolf, Verlag EUR 74,65 Alte Musik - Praxis und Reflexion : Sonderband zum 50. Jubiläum der Schola Cantorum Basiliensis

    53. VI.1. INTRODUCCIÓN
    Translate this page Aunque posteriormente se agregaron al Círculo de Viena otros miembros, como el abogadoFélix Kaufmann, los matemáticos Karl Menger y kurt reidemeister, y el
    http://omega.ilce.edu.mx:3000/sites/ciencia/volumen3/ciencia3/161/htm/sec_38.htm
    VI.1. INTRODUCCIÓN
    LA ESCUELA filosófica cuya contribución al método científico vamos a examinar en este capítulo fue bautizada por Blumberg y Feigl como positivismo lógico, aunque también se conoce como empirismo lógico, empirismo científico XIX, Otto Neurath (1882-1945). En 1926 Rudolf Carnap se incorporó a la Universidad de Viena como instructor de filosofía y permaneció ahí por cinco años, asistiendo regularmente a las reuniones, hasta que fue llamado a la Universidad de Praga. Tanto Schlick como Carnap eran físicos, el primero discípulo de Max Planck y el segundo de Gottlob Frege, pero ambos habían derivado sus intereses hacia la filosofía de la ciencia, influidos por las ideas de Mach. No es de extrañar, pues, que en 1928 el grupo se haya constituido formalmente en la "Ernst Mach Verein", o sea la "Sociedad Ernst Mach'', definiendo sus objetivos como la propagación y progreso de una visión científica del mundo y la creación de los instrumentos intelectuales del empirismo moderno. En 1929, para conmemorar el regreso de Schlick a Viena, que había pasado una temporada como profesor visitante en EUA

    54. Motivate : Stephen's Talk
    In 1926 the topologist kurt reidemeister proved that two projections of the sameknot can be related by a sequence of moves, which we now call the reidemeister
    http://motivate.maths.org/conferences/conf28/c_28_talk.shtml
    @import url(../../motivate.css); /*IE and NN6x styles*/ NRICH prime NRICH club PLUS maths motivate home
    about motivate

    archives

    teacher's resources
    ...
    bulletin board
    Back to : Knots Main Page Display maths using: fonts images
    Need help?
    Knots
    Introduction
    There is a really good web site for knots, called “The KnotPlot Site”, created by Robert Scharein. In particular, under the heading "Knot tables" on the page http://www.cs.ubc.ca/nest/imager/contributions/scharein/knot-theory/knot-theory.html there is a beautiful display of 16 knots. Here they are: The top row shows the trefoil knot, the figure-eight knot, two knots with five crossings, three knots with six crossings, and one with seven. The second row shows six more knots with seven crossings, and two with eight crossings. Altogether, there are 21 knots with eight crossings, and 49 with 9 crossings. In fact, if we just count prime knots, we have: Crossing number Number of prime knots We will be following the excellent book The Knot Book by Colin Adams, in working through a sequence of ideas and exercises. On the way, we will discover what the crossing number is, what a prime knot is, and we will also begin to see how this extraordinary table was drawn up. I have used the same exercise numbers as the book, even when I have slightly modified the wording.

    55. Steven Wolfe Books 151 Spiers Rd. Newton Centre, MA 02459 USA
    Publication, 3. 18403. reidemeister, kurt, 1893, hrsg. Hilbert. Gedenkband.Hrsg. von K. reidemeister. Mit 8 Abbildungen und einer Schallplatte.
    http://world.std.com/~shw/Mathematics.html
    Steven Wolfe Books
    151 Spiers Rd.
    Newton Centre, MA 02459
    USA
    E-mail: swolfe6999@aol.com

    www.world.std.com/~shw
    Subject Catalog Return to Main Page
    Africa

    Ancient-Egypt

    Anthropology
    ...
    World-History

    18366. Abraham, M. Leipzig, Berlin, B. G. Teubner, 1912-1920, 3te Auflage, 402pp., very good gray cloth, faded, some foxing on cover, $15 17228. Ackoff, Russell Lincoln, 1919-. Scientific method: optimizing applied research decisions. With the collaboration of Shiv K. Gupta and J. Sayer Minas. New York: John Wiley, 1962, 464pp.: ill. 24 cm, very good dust-jacket with a few minor tears, very good cloth, previous owner's name: Israel Scheffler, $85 Operations research Methodology, Decision making. 18409. Aronszajn, N., et al, ed. Transactions of the symposium on partial differential equations held at the University of California, at Berkeley, June 20-July 1, 1955, sponsored by Office of Naval Research [and others] Editorial committee: N. Aronszajn, A. Douglis [and] C. B. Morrey, Jr. [New York, Interscience Publishers, 1956?], vi, 334pp. illus. 27 cm, very good large gray cloth, slight edgewear, some foxing, $45 "Reprinted from Communications on pure and applied mathematics . volume IX, number 3 (1956)". United States. Office of Naval Research. Contributors: Arsove, Asgeirsson, Stefan Bergman, Lipman Bers, Felix Browder, Lamberto Cesari, Y. W. Chen, J. B. Diaz, Avron Douglis, Arthur ERdelyi, Robert Finn, George Forsythe, Philip Hartman, Albert E. Heins, Erhard Heinz, Alfred Huber, Tosio Kato, Joseph Lehner, Charles Morrey Jr., Louis Nirenberg, L. E. Payne, Ake Pleijel, E. H. Rothe, Kennan Smith, J. J. Stoker, John Todd, H. F. Weinberger, L. C. Young.

    56. Dictionary Of The History Of Ideas
    Its most active members were Hans Hahn (a mathematician, and an admirer of Russell s),kurt reidemeister (also a mathematician who called the circle s
    http://etext.lib.virginia.edu/cgi-local/DHI/dhi.cgi?id=dv3-69

    57. Mathematicians During The Third Reich And World War II
    See also. reidemeister, kurt Suddenly dismissed 1939 because of hisfrank comments on earlier disturbances by Nazi students. He
    http://wwwzenger.informatik.tu-muenchen.de/~huckle/mathwar.html
    Mathematicians during the Third Reich and World War II
    Prof. Thomas Huckle
    huckle@in.tum.de
    Last modified: March/12/2004
    Died
    Imprisoned

    Hidden

    Emigration
    ...
    General Information

    Died:
    Berwald, Ludwig:
    Dismissed 1939 in Prague; Deportation by Gestapo to Lodz where he died in April 1942.
    Blumenthal, Otto:
    [SCHAPPACHER, SIEGMUND,PINL]
    dismissed 1939 from Aachen and - for a short while - kept in "protective custody". Editor of 'Mathematische Annalen' until 1938. In 1939 he went to Holland. When the Netherlands had fallen, he refused the help of Dutch friends and was deported to Theresienstadt where he died 1944. Cavailles, Jean: [MENZLER-TROTT] Member of the resistance. Killed by the Gestapo 1944. See also Dickstein, Samuel: Died in the Nazi bombing of Warsaw in 1939. Epstein, Paul: [SIEGMUND, PINL] Frankfurt 1919 until 1935, suicide after summon from Gestapo August 1939. Froehlich, Walter: In 1939 dismissed in Prague, 1941 deported to Lodz and died there 1942. Hartogs, Fritz

    58. Scientific American Book Club
    We also follow kurt reidemeister’s work showing how threedimensional knots canbe represented as two-dimensional projections on the plane, as well as an
    http://www.sciambookclub.com/doc/full_site_enrollment/detail/fse_product_detail.

    59. B Showing Knot Equivalence
    For examples of projections that are not regular, click here. The reidemeisterMoves. In the 1920 s kurt reidemeister proved the following theorem.
    http://www.inst.bnl.gov/~wei/eq.html
    Showing Knot Equivalence
    Regular Projections
    While knots are embedded in three dimensions, one usually studies their two-dimensional projections (projections on a plane or a two-sphere). The projections that are usually considered are the so-called regular
    ones, which satisfy the following properties.
    • No more than two points of a knot are allowed to be projected on the same point of the two-dimensional surface.
    • Let a knot defined through f, and f(s) a point of the knot. The tangent at s, f'(s)=df/ds, is not allowed to be perpendicular to the projective surface.
    • Let f(s) and f(r) two points of a knot, and f'(s) and f'(r) the tangents at these two points. The differences f(s)-f(r) and f'(s)-f'(r) are not allowed to be simultaneously perpendicular to the projective surface.
    • At each crossing one distinguishes between the overcrossing and the undercrossing segment.
    All knots possess regular projections; in fact most of the projections do satisfy the properties above, since an infinitesimal change of a non-regular projection gives a regular one. For examples of projections that are not regular, click here
    The Reidemeister Moves
    In the 1920's Kurt Reidemeister proved the following theorem.

    60. Full Alphabetical Index
    Translate this page 876*) Rayleigh, Lord John (190*) Razmadze, Andrei (64) Recorde, Robert (282*) Regiomontanus(341*) Reichenbach, Hans (125) reidemeister, kurt (472*) Reiner
    http://www.geocities.com/Heartland/Plains/4142/matematici.html

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter