Geometry.Net - the online learning center
Home  - Scientists - Raphson Joseph
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-77 of 77    Back | 1  | 2  | 3  | 4 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Raphson Joseph:     more detail
  1. A Mathematical Dictionary: Or; a Compendious Explication of All Mathematical Terms, Abridged from Monsieur Ozanam, and Others. with a Translation of His ... Easie and Useful Abstracts; [Etc., Etc.] by Joseph Raphson, 2010-01-10
  2. Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolution by Isaac Newton, Joseph Raphson, et all 2010-02-03
  3. The history of fluxions, shewing in a compendious manner the first rise of, and various improvements made in that incomparable method. By (the late) Mr. Joseph Raphson, ... by Joseph Raphson, 2010-05-28
  4. Joannis [sic] Raphson, angli, Demonstratio de Deo sive methodus ad cognitionem Dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-06-10
  5. Historia fluxionum, sive tractatus originem & progressum peregregiæ istius methodi brevissimo compendio (et quasi synopticè) exhibens. Per Josephum Raphsonum ... (Latin Edition) by Joseph Raphson, 2010-05-27
  6. Analysis æquationum universalis, seu ad æquationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ... est, De spatio reali, ... (Latin Edition) by Joseph Raphson, 2010-06-16
  7. Demonstratio de deo sive methodus ad cognitionem dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-05-29
  8. A mathematical dictionary by Joseph Raphson, 1702-01-01

61. Brief Description And Manual For The FRAME Analysis Program
D_i} divided by the rootmean-square of {F}. Newton-raphson iterations stop ISBN0471551570 4. Raymond W. Clough and joseph Penzien, Dynamics of Structures
http://www.duke.edu/~hpgavin/frame/frame.html
A Brief Description and Manual for the FRAME Analysis Program
(version May 7, 2003)

http://www.duke.edu/~hpgavin/frame/

Department of Civil and Environmental Engineering

Edmund T. Pratt School of Engineering

Duke University
- Box 90287, Durham NC Henri Gavin - Associate Professor - - tel: 919-660-5201 - fax: 919-660-5219 NAME Gnuplot SYNOPSIS frame [Input/Ouput file] DESCRIPTION http://www.duke.edu/~hpgavin/frame/ . FRAME is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License ( GPL ) as published by the Free Software Foundation . FRAME is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ( GPL ) for more details. NOTES < d ) where Q = 1/3 - 0.2244 / (d/b + 0.1607); CROSS SECTION PROPERTIES OF SOME STANDARD WOOD SECTIONS Ax Asy Asz Jp Iy Iz 2x3 3.750 2.500 2.500 1.776 1.953 0.708 2x4 5.250 3.500 3.500 2.875 6.359 0.984 2x5 6.750 4.500 4.500 3.984 11.390 1.266 2x6 8.250 5.500 5.500 5.099 20.800 1.547 2x8 10.850 7.233 7.233 7.057 47.630 2.039 2x10 13.880 9.253 9.253 9.299 98.930 2.602 2x12 16.880 11.253 11.253 11.544 178.000 3.164 2x14 19.880 13.253 13.253 13.790 290.800 3.727 in^2 in^2 in^2 in^4 in^4 in^4

62. Isaac Newton (1642-1727) Library Of Congress Citations
Subjects Algebra Early works to 1800. Other authors Cunn, Mr. (Samuel),ed. raphson, joseph, d. 1715 or 16, tr. Wilder, Theaker.
http://www.mala.bc.ca/~mcneil/cit/citlcnewton.htm

Isaac Newton (1642-1727)
: Library of Congress Citations
The Little Search Engine that Could
Down to Name Citations LC Online Catalog Amazon Search Book Citations [First 40 Records] Author: Newton, Isaac, Sir, 1642-1727. Uniform Title: Chronology of ancient kingdoms amended Title: The chronology of antient kingdoms amended. To which is prefix'd, a short chronicle from the first memory of things in Europe, to the conquest of Persia by Alexander the Great. By Sir Isaac Newton. Published: London, Printed for J. Tonson [etc.] 1728. Description: xiv, [2], 376 p. 3 fold. plans. 23 x 19 cm. LC Call No.: D59 .N561 Notes: Title within black line border; head-piece. Dedication "To the queen" signed: John Conduitt. Subjects: History, Ancient Chronology. Other authors: Thomas Jefferson Library Collection (Library of Congress) DLC John Davis Batchelder Collection (Library of Congress) DLC Control No.: 03007260 //r96 Author: Whewell, William, 1794-1866. Title: The doctrine of limits with its applications; namely, conic sections, the first three sections of Newton, the differential calculus. A portion of a course of university education. By the Rev. William Whewell ... Published: Cambridge, J. and J.J. Deighton; London, J.W. Parker, 1838. Description: xxii p., 1 l., 172 p. diagrs. 22 cm. LC Call No.: QA303 .W46 Subjects: Conic sections. Calculus. Newton, Isaac, Sir, 1642-1727. Principia. Control No.: 03013158 //r84

63. IBER, UC Berkeley, Dept Of Economics Working Papers
89130 Converters, Compatibility, and the Control of Interfaces. joseph Farrelland Garth 89-105 A Comparison of the EM and Newton-raphson Algorithms. Paul
http://www.haas.berkeley.edu/groups/iber/wps/econwp.html
Abstracts Economics Working Papers
Economics Dept Faculty Home Pages
Center for International and Development Economics (CIDER) Working Papers
On-line Working Papers ARE MOVING to the eScholarship Digital Repository ..
http://repositories.cdlib.org/iber/econ/
Working Papers:
Purchasing/Ordering information
Help
Author Agreement Forms
Search list use command. See Abstract for Jel#, keywords
Download papers: Papers marked * are available on-line. Adobe Acrobat.pdf files require Adobe Acrobat Reader software.
E04-337. "A Model of Reference-Dependent Preferences." Botond Köszegi and and Matthew Rabin. January 2002. Acrobat .pdf
E04-336. "Expressed Preferences and Behavior in Experimental Games." Gary Charness and and Matthew Rabin. January 2003. Acrobat .pdf
E03-334 "Negotiation and Merger Remedies: Some Problems." Joseph Farrell. August 2003.
Acrobat .pdf ...
Acrobat .pdf
E02-326* "What to Maximize If You Must." Aviad Heifetz, Chris Shannon and Yossi Spiegel. December 2002.
Acrobat .pdf

64. Direct Configuration Interaction And Multiconfigurational Self-consistent-field
joseph Ivanic. J. Chem. Phys. The complete active space SCF (CASSCF) methodin a Newton–raphson formulation with application to the HNO molecule.
http://content.aip.org/JCPSA6/v119/i18/9364_1.html
The Journal of Chemical Physics
More from this issue of J. Chem. Phys. Journal subscribers exit here for OJPS Find articles by: Joseph Ivanic PACS Subject Classification Tree Atomic And Molecular Physics Electronic structure of atoms and molecules: theory Calculations and mathematical techniques in atomic and molecular physics Self-consistent-field methods ... Electron correlation calculations for atoms and molecules Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method
Joseph Ivanic
The Journal of Chemical Physics Vol 119(18) pp. 9364-9376. November 8, 2003 Abstract
In order to reduce the number of ineffective configurations in a priori generated configuration spaces, a direct configuration interaction method has been developed which limits the electron occupations of orbital groups making up a total active space. A wave function is specified by first partitioning an active space into an unrestricted number of orbital groups and second by providing limiting values

65. Mathematicians
Translate this page Isaac Newton, 1642 Woolsthorpe (nr. Grantham), 1727 London. joseph raphson,1648, 1715. Lewis Fry Richardson, 1881 Newcastle upon Tyne,, 1953 Kilmun, Argyll.
http://www.it.uu.se/edu/course/homepage/numMN1/ht02/pages/mathematicians.html
Mathematicians
Pafnuty Lvovich Chebyshev 1821 Okatovo 1894 St Petersburg Roger Cotes 1682 Burbage, Leicestershire 1716 Cambridge Leonard Euler 1707 Basel 1783 St Petersburg Boris Grigorievich Galerkin 1871 Polotsk, Belarus 1945 Moscow Carl Friedrich Guass 1777 Braunschweig Charles Hermite 1822 Dieuze, Lorraine 1901 Paris, David Hilbert 1862 Königsberg 1943 Göttingen, Karl Gustav Jacob Jacobi 1804 Potsdam Martin Willhelm Kutta 1867 Pitschen Edmond Nicolas Laguerre 1834 Bar-le-Duc 1886 Bar-le-Duc Adrien-Marie Legendre 1752 Paris 1833 Paris Colin Maclaurin 1698 Kilmodan (nr. Tighnabruaich) 1746 Edinburgh 1846 Stockholm 1897 Stockholm Isaac Newton 1642 Woolsthorpe (nr. Grantham) 1727 London Joseph Raphson Lewis Fry Richardson 1881 Newcastle upon Tyne, 1953 Kilmun, Argyll Werner Romberg 1909 Berlin Carl David Tolme Runge 1856 Bremen Phillip Ludwig von Seidel 1821 Zweibrucken 1896 Munich Thomas Simpson 1710 Market Bosworth, Leicestershire 1761 Market Bosworth Brooke Taylor 1685 Edmonton 1731 London A link to more history of mathematicians

66. Collections: Columbia Rare Book & Manuscript Library
Euclid and Newton; among the Newton holdings are several volumes from his library,including a volume of mathematical works by joseph raphson, Giovanni Cassini
http://www.columbia.edu/acis/textarchive/rare/rare12.html
T HE R ARE B OOK AND
M ANUSCRIPT L IBRARY
OF C OLUMBIA U NIVERSITY Collections
By Kenneth A. Lohf
M AJOR libraries have achieved their standing because of the specialized collections of books and related materials which they have gathered over long periods of time for the purposes of preserving the records of civilization and making those records available for research. The largest of the academic libraries, Columbia among them, could not have achieved those goals if it had not been for those dedicated and generous collectors whose gifts in kind and in endowments have formed them into formidable research repositories of rare printed and manuscript materials. The unusual collections under the stewardship of the Rare Book and Manuscript Library require distinctive conditions of housing, use, cataloging, preservation and security. This is readily apparent when one considers the range of holdings which, in addition to rare printed works, cylinder seals, cuneiform tablets, papyri, coptic ostraca, medieval and renaissance manuscripts, and literary and art posters, include as well authors' manuscripts from the sixteenth century to Herman Wouk and Allen Ginsberg, files of correspondence from John Milton to Hart Crane, and archives as varied as those of the Carnegie Endowment for International Peace, Daly's Theatre of New York City, the Citizens Union and the Woman Suffrage Association. On our premises are entire libraries of printed materials devoted to special subjects, such as Greek and Roman authors, the Knickerbocker School of writers, history of economics and banking, American theater, accountancy, weights and measures, the New York Society of Tammany, Joan of Arc, Mary Queen of Scots, Hector Berlioz, mathematics and astronomy. Broadening the extraordinary diversity of the holdings are substantial or representative collections of Greek and Roman coins, historical bindings, mathematical instruments, portraits of literary figures, original drawings of illustrators, railroad colorprints, fore-edge paintings, miniature books, and the like. However extensive and impressive present day resources are, their beginnings more than two centuries ago illustrate an early and equally profound recognition of the importance of books and manuscripts to the academic community.

67. Ascend Bibliographic Database (BibTeX) For Everybody
Tyner and Arthur Westerberg and Karl Westerberg and joseph Zaher}, title Berna ,title = Decomposition of very largescale Newton-raphson based flowsheeting
http://www-2.cs.cmu.edu/~ascend/bibtex/bibdata.html

68. Kolik Se Vejde Andìlù Na špièku Jehly
pp.6471 2 Brian P. Copenhaver Jewish Theologies of Space in the ScientificRevolution Henry More, joseph raphson, Isaac Newton and their Predecessors.
http://www.vhled.cz/Casopis_Vhled(cislo3)/Vstupni_stranka/Geometricky_svet_a_tel
Vhled
Jako duchovní bytosti jsou andìlé neviditelní. Jejich posláním je však zjevovat, jejich poselstvím je tvùrèí projev Boží a jejich vzájemnost zakládá jednotu zjevující se v rozprostranìnosti. Takto Bùh zjevuje svìtovým prostorem, každým jeho místem, svou všudypøítomnost. Køidýlka naznaèují schopnost a ochotu k pøenosu, tøepotavost vyjadøuje urèitelnou neurèenost, nelokalizovanou umístìnost. (Dodatek k úvaze PROJEKCE A IDENTIFIKACE - z dopisu prof. MUDr. Cyrilu Höschlovi DrSc. od ZN z 28.ledna L.P.2000 - dodateèný komentáø k pøíspìvku do sborníku k jeho padesátinám (Poznámka1)
Kolik se vejde andìlù na špièku jehly ?
Zdenìk Neubauer

Geometrizace svìta zbavila pøirozený tvar tìlesnosti a místo, kterým jej nahradila, "styènosti", tj. bytostné povahy rozhraní mezi tìlem tvaru a tìlem tvar obklopujícím. Mimo obì tìla, oddìleno od zdrojù styènosti, se místo jeví pouhým povrchem, pláštìm, obrysem - jakoby strašidlem. (Strašidla se rovnìž zjevují jako anthropoidnì zprohýbaná "prostìradla"; od svých geometrických protìjškù se však strašidelná zjevení liší mlhavostí: patøíc k jinému øádu duchovní skuteènosti, nejsou pøesnì taženými obrysy nýbrž matnì tanoucími podobami.)
"Mimo", "vnì", "oddìlenì" se øecky øekne CHÓRIS. Matematickou formalizaci vystihl Aristoteles jako CHÓRISMOS - "zvnìjšnìní", "zmimotnìní". Odpovídající latinský termín abstractio, doslova "vy-tažení", je výstižný, pokud navozuje pøedstavu stažení z kùže a nikoliv napø. vyhmátnutí urèitých (podstatných, spoleèných, obecných) stránek èi rysù, což by Aristotelovo prohlášení matematických postupù v pøírodovìdì za abstrakci vystavilo oprávnìným námitkám P. Vopìnky, že je tøeba pøedem vìdìt, co je ono podstatné a od èeho chceme odhlédnout. "Abstrakce" takto bìžnì pojímaná jako vytažení, výtažek, je totiž relativní (vztažená); dìje se vzhledem k nìèemu, a tímto vzhledem je právì IDEA, EIDOS, tedy vzhled jakožto bytostná podoba. Jeho CHÓRISMOS - bytí mimo to, èeho je vzhledem, tj. vnì jeho FYSIS, Aristoteles rozhodnì popíral.

69. Earliest Known Uses Of Some Of The Words Of Mathematics (A)
Algorithm is found in English in 1715 in The Theory of Fluxions by joseph raphson Now from this being known as the Algorithm, as I may say of this Calculus
http://members.aol.com/jeff570/a.html
Earliest Known Uses of Some of the Words of Mathematics (A)
Last revision: May 10, 2004 ABELIAN EQUATION. Leopold Kronecker (1823-1891) introduced the term Abelsche Gleichung in an 1853 paper on algebraically soluble equations. He used the term to describe an equation which in modern terms would be described as having cyclic Galois group [Peter M. Neumann]. ABELIAN FUNCTION. C. G. J. Jacobi (1804-1851) proposed the term Abelsche Transcendenten (Abelian transcendental functions) in Crelle's Journal 8 (1832) (DSB). Abelian function appears in the title "Zur Theorie der Abelschen Functionen" by Karl Weierstrass (1815-1897) in Crelle's Journal, Weierstrass' first publications on Abelian functions appeared in the Braunsberg school prospectus (1848-1849). ABELIAN GROUP. Camille Jordan (1838-1922) wrote in 1870 in Mathematische Annalen, 20 (1882), 301329. The term is used in the first paragraph of the paper without definition; it is given an explicit definition in the middle of p. 304. [Peter M. Neumann and Julia Tompson] The term ABELIAN INTEGRAL is found in a letter of Sept. 8, 1844, from William Henry Fox Talbot: "What is the definition of an Abelian Integral? for it appears to me that most integrals possess the Abelian property." The letter was addressed to John Frederick William Herschel, who, in his reply of Sept. 13, 1844, wrote: "I suppose the most general definition of an Abelian Integral might be taken to be this that between +(

70. Dundee Central Library - Ivory Collection
4to. raphson, joseph Analysis aequationem universalis seu ad aequationes algebraicasresolvendas methodus, generalis et expedita, ex nova infinitarum serierum
http://www.dundeecity.gov.uk/centlib/ivory/ivorycat.htm
Dundee Central Library - Ivory Collection
Academie Royale des Sciences et Belles Lettres de Prusse
Dissertations sur la theorie des cometes qui ont concouru au prix propose par l'academie. Utrecht: Barthelemy Wild, 1780
Sir James Ivory Collection
pp. 239 + VIII + 55
Adhemar, Joseph Alphonse
Cours de mathematiques a l'usage de l'ingenieur civil. Part I Arithmetique; Part II Geometrie descriptive. Paris: Carilian-Goeury, 1832
Sir James Ivory Collection
3 vols bound in one. pp. 80 + 160 + 30.
Adhemar, Joseph Alphonse
Cours de mathematiques a l'usage de l'ingenieur civil. "Geometrie descriptive" planches. Paris: Carilian-Goeury, n.d.
Sir James Ivory Collection
pp. 44. imp. 4to. missing. Airy, G. B. Gravitation: an elementary explanation of the principle perturbations in the solar system. London: Charles Knight, 1834 Sir James Ivory Collection pp. XXIII + 215. Alembert, Jean-le-Rond-d' Essai d'une nouvelle theorie de la resistance des fluides. Paris: David, 1752 Sir James Ivory Collection pp. XLVI + 212. 2 diagrs. sm. 4to.

71. Dictionary Of Eighteenth-Century British Philosophers
Thoemmes Press publishes primary sources and reference works in the History of Ideas for the academic community. Adams, William moral philosopher. Addison, joseph - journalist and essayist
http://www.thoemmes.com/dictionaries/18entries.htm
Dictionary of Eighteenth-Century British Philosophers
List of Entries
A B C D ... P Q R S T U ... W X Y Z A
Abernethy, John - Presbyterian minister, moral philosopher
Adair, James MaKittrick - physician
Adams, John - historian
Adams, William - moral philosopher
Addison, Joseph - journalist and essayist
Aikin, John - surgeon, wrote on poetry
Akenside, Mark - poet
Alison, Archibald - clergyman, wrote on aesthetics and taste
Allen, George - wrote on genius
Allen, John - physician, supporter of David Hume Amory, Thomas (1691?-1788) - wrote memoirs, defended rational religion Amory, Thomas (1701-74) - dissenting clergyman Anderson, George - clergyman, opposed Hume and Kames Anderson, John - wrote on physics Anderson, Walter - historian Andrews, John - wrote on history and morality Annet, Peter - critic of revealed religion

72. Newton's Method
of . The method is attributed to Sir Isaac Newton (16431727) andJoseph raphson (1648-1715). Theorem (Newton-raphson Theorem).
http://math.fullerton.edu/mathews/n2003/Newton'sMethodMod.html
Module for Newton's Method If are continuous near a root , then this extra information regarding the nature of can be used to develop algorithms that will produce sequences that converge faster to than either the bisection or false position method. The Newton-Raphson (or simply Newton's) method is one of the most useful and best known algorithms that relies on the continuity of . The method is attributed to Sir Isaac Newton (1643-1727) and Joseph Raphson
Theorem ( Newton-Raphson Theorem Assume that and there exists a number , where . If , then there exists a such that the sequence defined by the iteration
for
will converge to for any initial approximation Proof Newton-Raphson Method Newton-Raphson Method Algorithm ( Newton-Raphson Iteration To find a root of given an initial approximation using the iteration
for Computer Programs Newton-Raphson Method Newton-Raphson Method Mathematica Subroutine (Newton-Raphson Iteration). Example 1. Use Newton's method to find the three roots of the cubic polynomial
Determine the Newton-Raphson iteration formula that is used. Show details of the computations for the starting value

73. Newton's Method Tutorial
Introduction to Scientific Programming Computational Problem Solving Using Mapleand C Mathematica and C Author joseph L. Zachary Online Resources Maple/C
http://www.cs.utah.edu/~zachary/isp/applets/Root/Newton.html
Introduction to Scientific Programming
Computational Problem Solving Using:
Maple and C
Mathematica and C
Author:
Joseph L. Zachary
Online Resources:
Maple/C Version
Mathematica/C Version
Newton's Method Tutorial
In this tutorial we will explore Newton's method for finding the roots of equations, as explained in Chapter 14.
Simulation
We will be using a Newton's method simulator throughout this tutorial. You can start it by clicking on the following button. If you see this, then Java is not running in your browser!
An applet would normally go here...
Finding Roots
This tutorial explores a numerical method for finding the root of an equation: Newton's method. Newton's method is discussed in Chapter 14 as a way to solve equations in one unknown that cannot be solved symbolically. For example, suppose that we would like to solve the simple equation 2 x = 5 To solve this equation using Newton's method, we first manipulate it algebraically so that one side is zero. 2 x - 5 = Finding a solution to this equation is then equivalent to finding a root of the function 2 f(x) = x - 5 This function is plotted in the simulation window.

74. Nuclear And Particles
the use of a simple computer program using the Newtonraphson root finding JosephEberly, University of Rochester Time-dependent perturbation theory is used to
http://server-mac.pas.rochester.edu/yigal/rsps/proceedings/2004/abstracts_2004.h
RSPS 2004 Abstracts
ASNY/RSPS Joint Session
Stellar Formation and Spatial Distributions in S171

Kevin Flaherty, University of Rochester
Advisors: Prof. Judith Pipher and Robert Gutermuth, University of Rochester
S171 is a young stellar cluster containing many stars in the process of forming and in their early life. Infrared images of S171 were taken with STELIRCam at the Fred Lawrence Whipple Observatory atop Mt. Hopkins near Tuscon, Arizona in December 2001. Studying the images taken in three different wavelength bands reveals information about the formation of young stars and of brown dwarfs. Also, the spatial distribution of stars within S171 was studied to gather information about the formation of brown dwarfs.
A Near and Mid-Infrared Study of Young Stellar Cluster S140N
Michael Dunham, University of Rochester

75. Names
People whose names are embedded in Math Subject Classifcation (1991 version). This file is in several parts. 1. Short introduction 2. The list of names 3. Insightful or amusing comments about what can be found in the list. 3A.
http://www.math.niu.edu/~rusin/known-math/98/MSC.names

76. Chronologie Du Calcul Scientifique

http://gersoo.free.fr/calsci/history.html
Documents personnels Calcul Scientifique Editions MIR Informatique ... Grenier
Chronologie de l'Informatique Scientifique
l'Informatique Scientifique
Nomenclature
CAO, infographie
Informatique, calcul intensif
Programmation, calcul formel et symbolique
Abaques chinois Publication de Liber Abaci Invention des logarithmes par John Napier de Merchiston Formule de Stirling-De Moivre pour le calcul des factorielles La Pascaline de Blaise Pascal
Interpolation de Lagrange Introduction des nombres complexes par Caspar Wessel Methode des moindres-carrés par Adrien-Marie Legendre
Premières notions de FFT par Carl Friedrich Gauss
de Charles Babbage Machine Analytique Inventions des quaternions par William Rowan Hamilton steepest descent method ) par Augustin Louis Cauchy Utilisation des quaternions par Arthur Cayley pour les rotations dans l'espace Méthodes multi-pas de John Couch Adams et F. Bashforth Formule de Schwarz-Christofell pour les transformations conformes Equation de KdV de Diederik Korteweg et Gustav de Vries Premier algorithme de FFT par Carle David Tolme Runge Publication de Modular Equations and Approximations to delta-2 Sous-espaces de Alexei Nikolaevich Krylov Calculateur programmable Z3 de Konrad Zuse (Allemagne) Algorithme de FFT de Cornelius Lanczos et G.C. Danielson

77. History Of Mathematicians Used In Wi4010
equations. The method is defined by Isaac Newton (16421727) and JosephRaphson (1648-1715). Iterative methods for linear equations. The
http://ta.twi.tudelft.nl/nw/users/vuik/a228/hist.html
History of mathematicians
In this document we give some information of mathematicians which work or names are used in the course wi4010 Numerieke methoden voor grote lineaire algebraische stelsels . The course is based on the following book
Matrix Computations
Gene H. Golub
and Charles F. Van Loan
Johns Hopkins University Press, Baltimore, 1983
Theory
In order to be able to measure distances with respect to vectors and matrices we have defined normed spaces. Most of the spaces used in this course are Banach spaces Stefan Banach (1892-1945) . For the vector norms different choices are made. An important class of norms are the so-called Hölder norms Otto Ludwig Hölder (1859-1937) . For the special choice p=2 we get the Euclid norm Euclid ( 295 b.c.e.- ) . With respect to matrix norms we consider norms derived from vector norms. Furthermore we mention the Frobenius norm George Ferdinand Frobenius (1849-1917)
Furthemore we use spaces where an inner product is defined. Most of these spaces are Hilbert spaces David Hilbert (1862-1943) . Using the Hölder inequality we show that the Euclid norm satisfies the Cauchy-Schwarz inequality Augustin-Louis Cauchy (1789-1857) and Karl Hermann Amandus Schwarz (1843-1921)
Direct methods to solve linear systems
We start our description of direct methods for solving linear systems with the Gauss elimination method ( Carl Friedrich Gauss (1777-1855) ). Thereafter we discuss the Cholesky (

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-77 of 77    Back | 1  | 2  | 3  | 4 

free hit counter