Geometry.Net - the online learning center
Home  - Scientists - Poinsot Louis
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Poinsot Louis:     more books (29)
  1. Précession des équinoxes (French Edition) by Louis Poinsot, 1857-01-01
  2. Questions dynamiques sur la percussion des corps (French Edition) by Louis Poinsot, 1857-01-01
  3. Élémens de statique, suivis de trois mémoires sur la composition des nomens et des aires; sur le plan invariable du système du monde, et sur la théorie générale de léquilibre et du mouvement des systèmes. by Louis (1777-1859). POINSOT, 1837-01-01
  4. Claude Viallat by Claude] Froment, Jean-Louis; Poinsot, Jean-Marc [Viallat, 1980-01-01
  5. Éléments de statique: Suivis de quatre mémoires sur la composition des moments et des aires; sur le plan invariable du système du monde; sur la théorie ... de la rotation des corps (French Edition) by Louis Poinsot, 1842-01-01
  6. Élémens De Statique: Suivis De Trois Mémoires Sur La Composition Des Momens Et Des Aires; Sur Le Plan Invariable Du Système Du Monde, Et Sur La Théorie ... Du Mouvement Des Systémes (French Edition) by Louis Poinsot, 2010-03-10
  7. Elemens De Statique, Suivis De Trois Memoires (1834) (French Edition) by Louis Poinsot, 2010-09-10
  8. Elemens De Statique, Suivis De Trois Memoires (1834) (French Edition) by Louis Poinsot, 2010-09-10
  9. Recherches Sur L'Analyse Des Sections Angulaires (1825) (French Edition) by Louis Poinsot, 2010-09-10
  10. Reflexions Sur Les Principes Fondamentaux De La Theorie Des Nombres (1845) (French Edition) by Louis Poinsot, 2010-09-10
  11. Abhandlungen Uber Die Regelmassigen Sternkorper (1906) (German Edition) by Louis Poinsot, Augustin Louis Cauchy, 2010-09-10
  12. Mémoire sur les atmosphères liquides, et leur influence sur l'action mutuelle des molécules solides qu'elles enveloppent. with: POINSOT, Louis (1777-1859). Mémoire sur l'application de l'algèbre à la théorie des nombres.
  13. La theorie generale de l'equilibre et du mouvement des systemes by Louis Poinsot, 2000-05-03
  14. Outlines of a new theory of rotatory motion, by Louis Poinsot, 1834

21. Www.masrural.com: FERME DES LANDES (LA), LE MAOUT PIERRE, ORVOEN MARIE-LUCE, WIL
Translate this page EAST ANTHONY MARTINET ODILE LA FERME DU SYET poinsot ELISABETH FERME PAUL VIALLEGERMAINE CHLOROFEELING GAUTHIER JOCELYNE PEUFEILHOUX louis (DE) VIEILLEVIGNE
http://www.masrural.com/pag_clien/f_turismo/62188
LES COLLINES DE CHEVIGNY
EAST ANTHONY

MARTINET ODILE

LA FERME DU SYET
...
anterior
setTimeout('window.open("http://www.masrural.com","_top")',10000);

22. Www.masrural.com: HUBIN JEAN-MARIE, LAYAC JEAN-LOUIS, CHÂTEAU DE PUY VOZELLE, A
Translate this page JOULAUD louis BONNEFOY FRANCIS BONNEFOY JEAN-PIERRE LE BORGNE FRANÇOIS LES COLLINESDE CHEVIGNY EAST ANTHONY MARTINET ODILE LA FERME DU SYET poinsot ELISABETH
http://www.masrural.com/pag_clien/f_turismo/61879
HUBIN JEAN-MARIE
LAYAC JEAN-LOUIS

CHÂTEAU DE PUY VOZELLE

ABBAYE DU VAL DES CHOUES
...
anterior
setTimeout('window.open("http://www.masrural.com","_top")',10000);

23. Mathematicians From DSB
Translate this page Plücker, Julius, 1801-1868. Poincaré, Jules Henri, 1854-1912. poinsot, louis,1777-1859. Poisson, Siméon-Denis, 1781-1840. Poncelet, Jean Victor, 1788-1867.
http://www.henrikkragh.dk/hom/dsb.htm
Last modification: document.write(document.lastModified)
Webmaster

Validate html
Mathematicians from the Dictionary of Scientific Biography (DSB)
Abel, Niels Henrik Argand, Jean Robert Artin, Emil Beltrami, Eugenio Bérard, Jacques Étienne Bérard, Joseph Frédéric Berkeley, George Bernoulli, Johann (Jean) I Bernoulli, Jakob (Jacques) I Bertrand, Joseph Louis François Bessel, Friedrich Wilhelm Bianchi, Luigi Bjerknes, Carl Anton Bjerknes, Vilhelm Frimann Koren Bolyai, Farkas (Wolfgang) Bolyai, János (Johann) Bolzano, Bernard Bombelli, Rafael Borel, Émile (Félix-Édouard-Justin) Bouquet, Jean-Claude Briot, Charles Auguste Cantor, Georg Carathéodory, Constantin Cardano, Girolamo Cauchy, Augustin-Louis Cayley, Arthur Chebyshev, Pafnuty Lvovich Clairaut, Alexis-Claude Clausen, Thomas Clebsch, Rudolf Friedrich Alfred Colden, Cadwallader Collinson, Peter Condorcet, Marie-Jean-Antoine-Nicolas Caritat, marquis de Cramer, Gabriel Crelle, August Leopold d'Alembert, Jean le Rond de Morgan, Augustus Dedekind, (Julius Wilhelm) Richard Delambre, Jean-Baptiste Joseph Descartes, René du Perron

24. The Four Regular Non-convex Polyhedra
The other two were described by louis poinsot in 1809 but at leastone of them appears on a drawing by the same Jamnitzer. In 1810
http://cage.rug.ac.be/~hs/polyhedra/keplerpoinsot.html
The four regular non-convex polyhedra
Small Stellated Dodecahedron

Great Stellated Dodecahedron

Great Dodecahedron

Great Icosahedron

click on an image to enlarge...
It is known that the five Platonic polyhedra are the only regular convex polyhedra. A polyhedron, considered as a solid is convex if and only if the line segment between any two points of the polyhedron belongs entirely to the solid. However, if we admit a polyhedron to be non-convex, there exist four more types of regular polyhedra!
The four regular non-convex polyhedra are known as the Kepler-Poinsot Polyhedra . Two of them were described by Johannes Kepler in 1619 as being regular, although the objects themselves certainly were known earlier. One of them appears on a 16th century drawing by Jamnitzer and the other on a 15th century mosaic on the floor of the San Marco in Venice. The other two were described by Louis Poinsot in 1809 but at least one of them appears on a drawing by the same Jamnitzer. In 1810 the French mathematician Augustin-Louis Cauchy proved that the five Platonic and the four Kepler-Poinsot polyhedra are the only possible regular polyhedra.
All four Kepler-Poinsot polyhedra can be constructed starting from a regular dodecahedron or icosahedron. It' my purpose to demonstrate a possible construction for each of them.

25. Écoles Des Grands Concours Traditionnels
Translate this page Scientifiques, industriels, divers louis poinsot, louis Joseph Gay-Lussac,Denis Poisson, François Arago, Augustin Fresnel, Augustin Cauchy, Antoine
http://www.quid.fr/2000/Q036330.htm
Accueil Tout sur tout Villes et villages de France Atlas Sélections Web ... Web pratique
Aujourd'hui
Mardi 1 Juin St Justin
Abonnement
S'abonner à quid.fr
Quid Premium
Le Monde
La France
Téléchargement
36 860 Villes et villages de France
sur votre PDA
Shopping
Contact
Quid 2000
Données Quid 2000; Accéder à plus de 400 000 faits nouveaux avec Quid 2004 Classes préparatoires Table des matières Centrale-Supélec
Polytechnique, dite " l'X " e " Pour la Patrie, les Sciences, la Gloire. " But Bal : er le 22-2-1879. Point Gamma : re re e , 9 700 F la 3 e Conditions : er Effectifs : Places offertes en 1998 : 190 MP, 180 PC, 20 PSI ; Adm. p. : Admis en 1998 : Recherche. e cycles, es cycles de gestion es cycles de gestion. Administrateurs : aux Scientifiques, industriels, divers :

26. Diplomarbeit
Translate this page Körpern, das Tetraeder, Hexaeder, Oktaeder, Dodekaeder und Ikosaeder, haben Kepler(Johannes Kepler, 1571-1630) und poinsot (louis poinsot, 1777-1859) vier
http://www.stud.fernuni-hagen.de/q5171962/diplom.html
Einleitung meiner Diplomarbeit fünften Grades" in Mathematik
In seinem Buch über das Ikosaeder und die Gleichung fünften Grades hat Felix Klein die Theorie der Gleichung fünften Grades mit der Geometrie des Ikosaeders verknüpft. Die Möglichkeit dieser Verbindung geht auf die Tatsache zurück, dass sich die Ikosaedergruppe, dass heißt die Gruppe aller Rotationen, die ein Ikosaeder in sich überführen, mit der Gruppe A der geraden Vertauschungen von fünf Objekten identifiziert. Geometrisch erkennt man das über die Operation der Ikosaedergruppe auf den fünf Oktaedern, die man dem Ikosaeder ein- oder umbeschreiben kann. Anstelle des Ikosaeders hätte Klein seinen Betrachtungen genauso gut das duale Dodekaeder zugrunde legen können. Neben die fünf regulären Platonischen Körpern, das Tetraeder, Hexaeder, Oktaeder, Dodekaeder und Ikosaeder, haben Kepler (Johannes Kepler, 1571-1630) und Poinsot (Louis Poinsot, 1777-1859) vier weitere regelmäßige Körper, die heute so genannten Kepler-Poinsotschen Sternkörper gesetzt. Diese vier Sternkörper sind nicht mehr konvex, sie besitzen jedoch alle die gleiche Symmetrie wie das Ikosaeder und das Dodekaeder, so dass sie mit diesen von Coxeter zu den sechs so genannten pentagonalen Polyedern zusammengefasst worden sind. Alle anderen Polyeder mit Ikosaedersymmetrie genügen nur noch abgeschwächten Regularitätsbedingungen. Dazu zählen auch Vertreter der Klasse der uniformen Polyeder, die deckungsgleiche Eckfiguren haben und durch reguläre Vielecke begrenzt werden.

27. Walras
2). The true influence on Walras’ original idea of multiequational formulationwith regards to general equilibrium, however, was louis poinsot’s Elements
http://econc10.bu.edu/economic_systems/theory/Neoclassical/walras.htm
NEOCLASSICAL Walrasian Philosophy and Theory of General Equilibrium
by Kamrouz Ghadimi
Introduction Biography and Influences Leon Walras was born in Evreux, France on December 16, 1834. His father was Auguste Walras, who was a well-known economist of the 19th century and was close colleagues with Augustin Cournot (from whom the “Cournot Equilibrium” is derived). Walras was born into a time of ongoing industrialization in France. In essence, an “industrial revolution was unfolding, particularly in terms of the consequences: the creation and impoverishment of a growing industrial working class in a previously agrarian society” (1). The working class sank to a minimum in working conditions, salary and housing as well as in morality, which then was described as being “unworthy of man kind” (2). The slums in Paris housed masses of potential workers willing to offer their services for a small payment, as well as fostering an environment for social disorder. In February of 1848, the social abuses eventually led to what is now known as the “Revolution of 1848” (1). The revolt meant the end of the reign of Louis-Phillippe, and the beginning of the Second Republic with Louis Bonaparte as president. On December of 1851, a coup d’etat elevated Louis Bonaparte to his investiture as Emperor Napoleon Bonaparte III (2). The emperor implemented a practice of social and political reform, with an overlying theme of repression at the forefront.

28. The Kepler-Poinsot Polyhedra
Two centuries later, in 1809, louis poinsot discovered two more nonconvexregular solids the great dodecahedron and the great icosahedron.
http://home.teleport.com/~tpgettys/kepler.shtml
The Kepler-Poinsot Polyhedra
A polyhedron is regular if the faces are a single kind of regular polygon and the vertices are all the same. The 5 Platonic Solids are the convex regular polyhedrons. If we remove the constraint of convexity it turns out that there are only four more solids that can be added to the list; these are known as the Kepler-Poinsot Polyhedra It was Johann Kepler who, in 1619, first realized that 12 pentagrams can be joined in pairs along their edges in two different ways that result in regular solids. If five pentagrams meet at each vertex, the resulting solid has come to be known as the small stellated dodecahedron Small Stellated Dodecahedron If three pentagrams meet at each vertex, the resulting solid is now named the great stellated dodecahedron (The perhaps surprising reason for these names will be made evident shortly). Great Stellated Dodecahedron Two centuries later, in 1809, Louis Poinsot discovered two more non-convex regular solids: the great dodecahedron and the great icosahedron . The twelve faces of the great dodecahedron are pentagons (as with the ordinary dodecahedron), but which intersect each other. Likewise, the faces of the great icosahedron are the 20 triangles of the ordinary icosahedron, but intersecting each other.

29. LIBRIS Nyförvärvslista
Uppsala, Uppsala. 81 s. (UPTEC K 1650-8297 ; 03002). P. poinsot, louis. 328 s. ill. poinsot, louis. Précession des équinoxes / par M. Pionsot.
http://www.ub.uu.se/linne/ang/jan03a.html
A
Approximation Theory and its Applications Approximation Theory and its Applications. - Nanjing : Nanjing University. - 1- (1985. ISSN 1000-9221
Atti della Accademia nazionale dei Lincei. Memorie / Classe di Scienze morali, storiche e filologiche Atti della Accademia nazionale dei Lincei. Memorie / Classe di Scienze morali, storiche e filologiche. - Roma, 1876. - Ser. 3, vol. 1-13 ; Ser. 4, vol. 1-13 ; Ser. 5, vol. 1-17 ; Ser. 6, vol. 1-9 ; Ser. 7, vol. 1-4 ; Ser. 8, vol. 1-33 ; Ser. 9, vol 1. ISSN 0391-8149
B
Baccelli, François Louis Elements of queueing theory : Palm Martingale calculus and stochastic recurrences / François Baccelli, Pierre Brémaud. - 2. ed. - Berlin : Springer-Vlg, 2003. - 334 s. (Applications of mathematics, 99-0108603-5 ; 26) ISBN 3-540-66088-7
Ballabio, Luigi, 1970 Calculation and measurement of the neutron emission spectrum due to thermonuclear and higher-order reactions in tokamak plasmas / by Luigi Ballabio. - Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. - 49 s. : ill. (Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, 1104-232X ; 797) Diss. (sammanfattning) Uppsala : Univ., 2003 ISBN 91-554-5512-3
Bartholomäi, Friedrich

30. Kepler Solid
There are only four Kepler solids. The other two are the greater icosahedronand greater dodecahedron which were described by louis poinsot in 1809.
http://www.fact-index.com/k/ke/kepler_solid.html
Main Page See live article Alphabetical index
Kepler solid
A Kepler solid is a regular non convex polyhedron, all the faces of which are regular polygons and which has the same number of faces meeting at all its vertices. (compare to Platonic solids). There are four:
  • greater stellated dodecahedron lesser stellated dodecahedron great dodecahedron great icosahedron
The first two are stellations, that is, their faces are concave. The second two have convex faces, but each pair of faces which meet at a vertex in fact does so in two. The Kepler solids were defined by Johannes Kepler in , when he noticed that the stellated dodecahedrons (there are two, a greater and a lesser) were composed of "hidden" dodecadrons (with pentagonal faces) that have faces composed of triangles, and thus look like stylized stars. Wentzel Jamnitzer actually found the great stellated dodecahedron and the great dodecahedron in the , and Paolo Uccello discovered and drew the lesser stellated dodecadron in the . Kepler's contribution was in recognizing that they fit the definition of regular solids, even though they were concave rather than convex , as the traditional Platonic solids were.

31. Augustin Louis Cauchy
Augustin louis Cauchy s father was active in his education. He did not succeed,being beat by the likes of Legendre, poinsot, Ampère, and Binet.
http://www.stetson.edu/~efriedma/periodictable/html/Cu.html
Augustin Louis Cauchy
Augustin Louis Cauchy's father was active in his education. Laplace and Lagrange were visitors at the Cauchy family home, and Lagrange in particular seems to have taken an interest in young Cauchy's mathematical education. Lagrange advised Cauchy's father that his son should obtain a good grounding in languages before starting a serious study of mathematics, so he spent two years studying classical languages. In 1810 Cauchy took up his first job in Cherbourg to work on port facilities for Napoleon's English invasion fleet. In addition to his heavy workload Cauchy undertook mathematical researches, and he proved in 1811 that the angles of a convex polyhedron are determined by its faces. He submitted his first paper on this topic then, encouraged by Legendre and Malus, he submitted a further paper on polygons and polyhedra in 1812. Cauchy felt that he had to return to Paris if he was to make an impression with mathematical research. In 1815, he was appointed assistant professor of analysis at the Ecole Polytechnique. In 1816 he won the Grand Prix of the French Academy of Science for a work on waves. He achieved real fame however when he submitted a paper to the Institute solving one of Fermat's claims on polygonal numbers made to Mersenne. Politics now helped Cauchy into the Academy of Sciences when Carnot and Monge fell from political favour and were dismissed and Cauchy filled one of the two places. By 1830, the political events in Paris and the years of hard work had taken their toll and Cauchy decided to take a break. He spent a short time in Switzerland. Political events in France meant that Cauchy was now required to swear an oath of allegiance to the new regime, and when he failed to return to Paris to do so he lost all his positions there. He taught in Turin in 1832, and in Prague the following year.

32. Scientific Identity: Portraits From The Dibner Library Of The History Of Science
Image ~. Scientist poinsot, louis (1777 1859). Discipline(s) Mathematics; Physics. cm. Portrait of louis poinsot ~ Enlarge Image ~.
http://web4.si.edu/sil/scientific-identity/display_results.cfm?alpha_sort=p

33. Institut De France - Académiciens
Translate this page Sc, 4 e trimestre, Jean Baptiste HUZARD (1755-1838) ou louis poinsot (1777-1859). Sc,3 e trimestre, Jean Baptiste HUZARD (1755-1838) ou louis poinsot (1777-1859).
http://www.institut-de-france.fr/academiciens/presicom1.htm
A CAD MICIENS Rites et mythes Chanceliers et
Bureau de l'Institut
Administration de l'Institut
Ordonnance du 21 mars 1816
11 avril AF e trimestre
IBL e trimestre
Sc e trimestre
BA er trimestre
AF e trimestre
Sc e trimestre
Sc e trimestre
BA er trimestre AF e trimestre IBL e trimestre Sc e trimestre BA er trimestre (1756-1822) ou AF e trimestre Pierre DARU (1767-1829) ou IBL e trimestre Sc e trimestre BA er trimestre AF e trimestre IBL e trimestre Martin Marie Charles de VANDERBOURG (1765-1827) ou Antoine Jean LETRONNE Sc e trimestre BA er trimestre Maximilien Joseph HURTAULT AF e trimestre Pierre DARU (1767-1829) ou IBL e trimestre Antoine Jean LETRONNE (1787-1848) ou Sc e trimestre (1752-1835) ou BA er trimestre Maximilien Joseph HURTAULT (1765-1824) ou Charles Simon CATEL AF e trimestre Pierre DARU (1767-1829) ou IBL e trimestre Antoine Jean LETRONNE (1787-1848) ou Sc e trimestre Jean Baptiste HUZARD (1752-1835) et BA er trimestre Maximilien Joseph HURTAULT (1765-1824) ou Charles Simon CATEL AF e trimestre Pierre DARU (1767-1829) ou IBL e trimestre (1788-1832) ou Charles Alexandre AMAURY-DUVAL Sc e trimestre Jean Baptiste HUZARD (1755-1838) BA er trimestre Jean Nicolas HUYOT AF e trimestre Pierre DARU (1767-1829) ou IBL e trimestre Charles Alexandre AMAURY-DUVAL (1760-1838) ou Sc e trimestre (1765-1829) ou Jean Baptiste HUZARD BA er trimestre Jean Nicolas HUYOT

34. Institut De France - Recherche
Translate this page Francesco) Académie des Beaux-Arts (section de Peinture) POINCARÉ (Jules, Henri)Académie des Sciences (section de Géométrie) poinsot (louis) Classe des
http://www.institut-de-france.fr/franqueville/premier_siecle/rech_premier_p.htm
L
A
B C D ... Z
L
PAR LE COMTE DE FRANQUEVILLE, MEMBRE DE L'INSTITUT. P

Ac
PAGET (Sir James)
Ac
PAISIELLO (Giovanni)
Classe des Beaux-Arts
PAJOU (Augustin)
Classe Classe des Beaux-Arts Ac PALASSOU (Pierre, Bernard) Classe des Sciences Classe Classe des Sciences (section de Botanique) PALISSOT DE MONTENOY (Charles) Classe Classe PALLAS (Peter, Simon) Classe des Sciences PANIZZA (Bartolomeo) PANOFKA (Theodor) PAOLI (Pietro) Classe PAOLINO (Bartolomeo, Weszdin, Jean, Philippe, dit) Classe Classe des Sciences morales et politiques (section d'Histoire) PARDESSUS (Jean, Marie) PARIS (Alexis, Paulin) PARIS (Gaston, Bruno, Paulin) PARIS (Pierre, Adrien) Classe PARMENTIER (Antoine, Augustin) Classe des Sciences PARRY (Sir William, Edward) PASCAL (Jean, Louis)

35. Informations Généalogiques
Translate this page BACHELIER, louis, BACHELIER, louise, Retour à la page principale. Retour à lapage principale. poinsot, x (Sosa 2966), Naissance 1653 à Landreville, 10 ?
http://m.thblt.free.fr/arbre/dat5.htm
PRUNIER, Michel
PRUNIER, Jacques GERMAIN, Marte (Sosa 1441) PRUNIER, Jacques
D'AUTIER, Henry
DOTHIER, Catherine (Sosa 1443)
Famille PRUNIER - OLIVIER Mariage:
OLIVIER, Marie Anne
PRUNIER, Marie Anne
MONTET, Michel
MONTET, Pierre (Sosa 705) MONTET, Laurent
(Sosa 176) RONDIN, Pierre RONDIN, Marie Catherine MANDONNET, Marie Catherine (Sosa 707)
Famille Mariage:
LE CLERC, Marie Anne
(Sosa 709)
(Sosa 177) MONTET, Robert MONTET, Marie Jeanne VAILLANT, Jeanne (Sosa 711)
MONTET, Laurent Jean Baptiste
(Sosa 88)
MONTET, Pierre
(Sosa 5694) Famille Mariage: (Sosa 2847)
RONDIN, Antoine
RONDIN, Joseph DAUVILLIERS, Jeanne (Sosa 2825) RONDIN, Joseph GILLET, Nicolas GILLET, Marie Magdelaine PRUNIER, Jeanne (Sosa 2827) Famille RONDIN - MONTET Mariage: MONTET, Jacques MONTET, Jacques LE CONTE, Louise (Sosa 2841) MONTET, Marguerite JUBIN, Jacques JUBIN, Louise (Sosa 2843) RONDIN, Pierre
CARQUEVILLE, Etienne
CARQUEVILLE, Nicolas BOUTELOUP, Marie (Sosa 5775) CARQUEVILLE, Toussaint HEROUIN, Marie Famille CARQUEVILLE - X Mariage: CARQUEVILLE, Toussaint
CARQUEVILLE, Jean
CARQUEVILLE, Etienne SERGERON, Madeleine (Sosa 11549) CARQUEVILLE, Nicolas

36. Poinsot Solid - Encyclopedia Article About Poinsot Solid. Free Access, No Regist
The other two are the greater icosahedron and greater dodecahedron which were describedby louis poinsot in 1809 Centuries 18th century 19th century - 20th
http://encyclopedia.thefreedictionary.com/Poinsot solid
Dictionaries: General Computing Medical Legal Encyclopedia
Poinsot solid
Word: Word Starts with Ends with Definition A Kepler solid is a regular non convex An object is convex if for any pair of points within the object, any point on the line that joins them is also within the object. For example, a solid cube is convex, but anything that is hollow or has a dent in it is not convex.
Convex set
In mathematics, convexity can be defined for subsets of any real or complex vector space. Such a subset C is said to be convex if, for all x and y in C and all t in the interval [0,1], the point tx t y is in C . In words, every point on the straight line segment connecting x and y is in C
Click the link for more information. polyhedron, all the faces of which are regular polygons A polygon (from the Greek poly , for "many", and gwnos , for "angle") is a closed planar path composed of a finite number of straight line segments. The term polygon sometimes also describes the interior of the polygon (the open area that this path encloses) or the union of both. The straight line segments that make up the polygon are called its sides or edges and the points where the sides meet are the polygon's vertices
Click the link for more information.

37. Le Romain Des Mots-croisés. **Mathématiciens
Translate this page CLERMONT (1623-1662) PICARD (EMILE) NÉ, A, PARIS (1856-1941) POINCARE(HENRI) NÉ,A, NANCY (1854-1912) poinsot(louis) NÉ, A, PARIS (1777-1859) POISSON(DENIS
http://www.mots-croisiste.com/19.html
Index général aéroport affluents Centrale nucléaire et hydroélectriques Chefs-Lieux Collines de Rome Communes Compositeurs Constellations Cyclades Déesses Dieux Divinités Écrivains Fleuves Côtier FLeuves des enfers Fleuves Historiens Homme d'état Homme Politiques Lacs Massifs Mathématiciens Noms Peintres Poètes Ports et Ports Fluviaux Rivières Sculteurs Théologiens Torrents Villes
MATHEMATICIENS
MATHEMATICIENS, ALLEMANDS. ARTIN (EMIL) NÉ, A, VIENNE (1898-1962)
CANTOR (GEORG) NÉ, A, ST-PETERSBOURG (1845-1918)
DEDEKIND (RICHARD) NÉ, A, BRUNSWICK (1831-1916)
DIRICHLET (GUSTAV LEJEUNE) NÉ, A, DUREN(1805-1859)
FUCHS (LAZARUS) NÉ, A, MOSCHIN (1833-1902)
GAUSS (CARL FRIEDRICH) NÉ, A, BRUNSWICK) (1777-1855)
GRASSMANN (HERMANN) NÉ, A, STETTIN (1809-1877)
HAUSDORFF(FELIX) NÉ, A, BRESLAU (1868-1942)
HILBERT (DAVID) NÉ, A, KONIGSBERG (1862-1943)
JACOBI (CARL) NÉ, A, , POTSDAM (1804-1851)
KLEIN (FELIX) NÉ, A, DUSSELDORF (1849-1925) KRONECKER (LEOPOLD) NÉ, A, LIEGNITZ (1823-1891) KUMMER (ERNST EDUARD ) NÉ, A, SORAU (1810-1893) LEIBNIZ (GOTTFRIED WILHELM) NÉ, A, LEIPZIG (1646-1716) LINDEMANN (FERDINAND VON ) NÉ, A, HANOVRE (1852-1939)

38. 1139-1140 (Nordisk Familjebok / Uggleupplagan. 21. Papua - Posselt)
2. Raymond Nicolas Landry P. Poinciana, bot. - Poinsettia, bot. Se Euphorbia -poinsot, louis - Point - Point de Galle. Se Galle, sp. 615 - Point Dungeness.
http://www.lysator.liu.se/runeberg/nfca/0622.html
Nordisk familjebok Uggleupplagan. 21. Papua - Posselt
(1915) Tema: Reference
Table of Contents / Innehåll
Project Runeberg Catalog ... Print (PDF) On this page / på denna sida - Poincaré. 2. Raymond Nicolas Landry P. - Poinciana, bot. - Poinsettia, bot. Se Euphorbia - Poinsot, Louis - Point - Point de Galle. Se Galle, sp. 615 - Point Dungeness. Se Dungeness - Pointe - Pointe-à-Pitre - Pointe de Penmarch. Se Penmarch - Pointe des Galets - Pointe des Lacerandes. Se Dronaz - Pointelin, Auguste Emmanuel - Pointer, eng. Se Hunden, sp. 1312 och pl. I, fig 2 - Pointe Sèche. Se Dry point, sp. 922 - Pointillé - Pointillism - Point Loma - Points d'Alençon. Se Alençon och Spetsar - Points de Malines. Se Mecheln och Spetsar - Poir. - Poiré, Emmanuel (Caran d'Ache)
Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.

39. À§´ëÇѼöÇÐÀÚ ¸ñ·Ï
poinsot, louis poinsot Born 3 Jan 1777 in Paris, France Died 5 Dec 1859 in Paris,France Poisson, Siméon Denis Poisson Born 21 June 1781 in Pithiviers
http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=P

40. Biographie.
Translate this page cela fut suffisant pour décider les autorités à incorporer Robert louis Bretà en juillet 1942, quand elle voit tomber aux mains de poinsot les camarades
http://ffi33.ifrance.com/ffi33/Biographies/bret.htm
Biographie.
Résistants honorés.
Bret Robert et Bret Georgette. Plan de site
Bret Robert Les traminots. Syndicats girondins. Bret Georgette. Cahier de la Résistance n°15
Bordeaux 1940-1944, René Terrisse.
Hommage aux fusillés de Souge.
Robert Louis Bret est né le 8 septembre 1906 à Cenon.
Ouvrier qualifié à la compagnie des T.E.O.B, où il est ajusteur, il participe à la vie sociale et politique au coeur de l'entreprise. Son activité remarquée lui devra de participer à la commission d'organisation de la région bordelaise et à paraître dans les fichiers de la police sous la mention "membre très actif du Parti communiste".
Il est un des organisateurs de la grève de neuf jours des trams de Bordeaux.
Figure marquante de la vie sociale bordelaise il fait partie des 148 communistes pris dans la rafle du 22 novembre 1940. La compagnie, suivant le pas, le révoque.
Le long interrogatoire que subit Robert Bret fut commenté, pour la Feldkommandantur, de la manière suivante, par le préfet Pierre-Alype:
Cette contestation systématique est carac- téristique de l'état d'esprit de l'intéressé qui, s'il n'est pas un militant d'envergure

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter