Geometry.Net - the online learning center
Home  - Scientists - Lissajous Jules
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Lissajous Jules:     more detail

41. Jules Antoine Lissajous - Wikipedia
Translate this page jules Antoine lissajous. Die Texte stammen aus der Wikipedia - Dies ist nicht dieWikipedia. jules Antoine lissajous (* 4. März 1822 in Versailles, † 24.
http://www.torfkopp.de/keyword/Jules_Antoine_Lissajous.php
Nicht angemeldet
Anmelden
Hilfe
Jules Antoine Lissajous
Die Texte stammen aus der Wikipedia - Dies ist nicht die Wikipedia
Jules Antoine Lissajous 4. März in Versailles 24. Juni in Plombières) war ein französischer Physiker Lissajous wurde durch die Entdeckung der nach ihm benannten Figuren bekannt. Sie entstehen bei der Überlagerung linearer Schwingungen , ihre Form ist vom Frequenzverhältnis und der zu Beginn vorhandenen Phasenwinkeldifferenz abhängig. Bei ungleichen Frequenzen ergibt sich eine unveränderliche Lissajous-Figur , wenn beide Frequenzen ein rationales Verhältnis bilden. Anderenfalls wiederholen sich die Bahnkurven nicht, die Lissajous-Figur verändert sich ständig. Bei gleichen Frequenzen ergeben sich Ellipsen unterschiedlicher Exzentrizität Im Jahr 1855 beschrieb Lissajous eine Methode zur Darstellung derartiger Schwingungen. 1873 wurde er von der Academie des Sciences mit dem Lacaze-Preis für seine Arbeiten zur Beobachtung, Messung und Deutung von Schwingungen ausgezeichnet. Eine einfache Versuchsanordnung zur Nachahmung von Lissajous Arbeiten könnte wie folgt aussehen: Ein Pendel wird so aufgehängt, dass sich das Pendel nicht nur in einer Ebene, sondern in verschiedene Richtungen bewegen kann. Es wird zunächst durch einen Stoß in Schwingungen versetzt. Anschließend erhält das Pendel einen weiteren Stoß in eine andere Richtung. Jetzt vollführt das Pendel gleichzeitig Schwingungen in zwei verschiedene Richtungen, was zur Folge hat, dass die Bahn der Pendelmasse eine zwar sehr komplizierte, aber in sich geschlossene Linie, nämlich eine Lissajous-Kurve, beschreibt. Man kann sie aufzeichnen, indem man als schwingende Masse einen mit Sand gefüllten Trichter verwendet, aus dem der Sand langsam ausströmt.

42. Lissajous Figures
The optical production of the curves was first demonstrated in 1857 by jules AntoineLissajous (18331880), using apparatus similar to that at the left.
http://physics.kenyon.edu/EarlyApparatus/Oscillations_and_Waves/Lissajous_Figure
Lissajous Figures Lissajous Figures were first described in 1815 by Nathaniel Bowditch (1773-1838), who is best known today for his book, "The New American Practical Navigator", still available today. He also wrote widely on mathematics and astronomy, while pursuing a career as a navigator, surveyor, actuary and insurance company president, as well as being a member of the Corporation of Harvard College. The optical production of the curves was first demonstrated in 1857 by Jules Antoine Lissajous (1833-1880), using apparatus similar to that at the left. Today we can do the same experiment more easily with a laser beam that reflects from the two mirrors vibrating at right angles to each other and then traces the Lissajous figure on the wall. On the left is a pair of tuning forks permanently mounted at right angles to each other. The apparatus is shown in the 1900 catalogue of Max Kohl at a price of 66 Marks. It is in the collection at St. Mary's College in Notre Dame Indiana. The frequency of the tuning forks in both sets of apparatus can be varied by sliding masses up and down.

43. Lissajous Figures
Named after the French mathematician julesAntoine lissajous. lissajousfigures can be thought of as a simple physical system with springs.
http://www.physics.emory.edu/~weeks/ideas/lissajou.html
Eric Weeks - personal pages - misc
Lissajous Figures
weeks@physics.emory.edu
This was created with the following command: I don't know much about Lissajous figures; probably there's some place else on the web that you could learn a whole lot about them from . Basically they're sort of failed circles, or rather, a circle is the simplest Lissajous figure. By varying the rate at which X and Y change (changing the 18 and 20 above) you change how the Lissajous figure forms. Named after the French mathematician Jules-Antoine Lissajous. Lissajous figures can be thought of as a simple physical system with springs. Suppose you have a weight hanging from a spring, and you pull the weight downward and let go. If you graph the vertical position -vs- time, you get a sine wave. (A real spring would also have friction, so the sine wave would get smaller as the spring lost energy.) Imagine you have a weight hanging from a spring, with two horizontal springs attached to it, making an upside down T with the horizontal springs attached to walls. The weight can now move from side to side as well; if you pull it to one side, and let go, the weight will move in a sine wave again except with the horizontal position being what oscillates. If you have both horizontal and vertical springs, and you move the weight diagonally (so that all of the springs are stretched) and let go, the position of the weight will trace out a Lissajous figure. The frequencies of the springs will determine how the Lissajous figure looks. For example, the figure at the top of the page might be from a weight/spring system with a vertical frequency of 1/20 and a horizontal frequency of 1/18.

44. A Brief History Of Cymatics
lissajous (18221880) jules lissajous, a French physicist and mathematician, investigatedthe relationships of sound frequencies, waves, and vibrations.
http://www.cymatherapy.com/articles/brief-history-cymatics.html
Restoring health
and harmony
through sound
Home Products Practitioners Training ... Print this page
A Brief History of Cymatics
The following article was published in Spirit of Ma'at: Spirit of Ma'at: http://www.spiritofmaat.com
Ernst Florenz Friedrich Chladni (1756-1827)
Musician and physicist Ernst Chladni laid the foundation for the discipline in physics that came to be called "acoustics"—the science of sound. His fundamental theories, published in his "Discovery of the Theory of Pitch," have pioneered the basic elements of acoustics, including vibration and pitch.
In 1786, he Chladni was able to identify the quantitative relationships governing the transmission of sound, using mathematical analysis to interpret his findings. As the first person to mathematically quantify the relationships governing sound transmission, he came to be known as the Father of Acoustics.
Chladni's experiments consisted of using geometrically shaped, thin glass or metal plates covered with fine sand sprinkled uniformly over the surfaces. He utilized a violin bow to strum along the edge of these plates. The resulting sand patterns illustrated the effects of the vibrations of the violin frequencies. The sand, under the influence of the vibrations of these sound frequencies, moved from the antinodes, collecting symmetrically in nodal lines, forming intricate patterns.
Chladni proved that the pressure derived from sound waves affects physical matter. His documentation was so detailed that, following his methods, the effects of his experiments are reproducible even today. His diagrams depicting the sound patterns derived from these experiments have come to be called Chladni Figures.

45. Lissajous
Translate this page jules Antoine lissajous. Né le 4 Mars 1822 à Versailles, FranceDécédé le 24 Juin 1880 à Plombières, France. lissajous entre
http://www.ac-nice.fr/physique/lissajous/biblio.html
Jules Antoine Lissajous
Né le : 4 Mars 1822 à Versailles, France
Lissajous
En 1850 il obtient son doctorat pour une thèse sur l'enregistrement des vibrations
Lissajous s ' intéresse aux ondes et développe une méthode optique pour l'étude des vibrations . Au début , il étudie les ondes produites par un diapason à la surface de l'eau . In 1855 , il décrit une méthode d'étude des vibrations acoustiques par réflexion d'un rayon lumineux sur un écran , par un miroir lié à l'objet en vibration . Il obtient les courbes de Lissajous par réflexion successive de la lumière sur deux miroirs fixés sur deux diapasons vibrant à angle droit. Les courbes sont vues uniquement à cause de la persistence rétinienne. Lissajous étudia les mouvements observés quand les diapasons vibraient avec des fréquences différentes. Lissajous reçut le Prix Lacaze en 1873 pour ses travaux sur l'observation optique des vibrations. Retour à la page Courbes de Lissajous

46. Courbes De Lissajous
Translate this page Courbes de lissajous. Courbes de lissajous. Les courbes de lissajous ontété découvertes par le physicien francais jules Antoine lissajous .
http://www.ac-nice.fr/physique/lissajous/
Courbes de Lissajous
Courbes de Lissajous

Les courbes de Lissajous ont été découvertes par le physicien francais Jules Antoine Lissajous
Avant l 'apparition des moyens de mesure électronique ( fréquencemètre , phasemètre...), les courbes de Lissajous ont été utilisées pour déterminer les fréquences des sons ou de signaux radio. Un signal de fréquence connue est appliqué à l' entrée de déviation horizontale d' un oscilloscope, et le signal dont on veut mesurer la fréquence est appliqué à l'entrée de déviation verticale. La figure résultante est une fonction du quotient des deux fréquences.
Vous disposez d' un oscilloscope virtuel avec lequel vous pourrez générer différentes figures .
Vous pouvez faire varier la fréquence horizontale xFREQ. Vous pouvez également faire varier la fréquence verticale yFREQ .) L' application JAVA permet aussi d' appliquer un signal hueFREQ pour moduler la nuance de la trace, on peut ainsi créer des figures colorées..
Comment opérer:
Pour obtenir vos propres courbes , utiliser les compteurs digitaux à droite.
Ajuster les compteurs en cliquant sur les chiffres: en cliquant près du haut du chiffre vous augmentez sa valeur ; en cliquant près du bas vous la diminuez .

47. Museum Information - Milton J. Rubenstein Museum Of Science & Technology
Understanding lissajous Figures lissajous (pronounced LEEsuh-zhoo) figureswere discovered by the French physicist jules Antoine lissajous.
http://www.most.org/cs_liss.cfm
Maze Weird Pic Tower of Hanoi Lunar Lander ...
Revitalization

Current Events
Cool Stuff - Lissajous Lab
Use the preset buttons to the left or make up your own combination of values to create a pattern you like. (See bottom of page for an explaination of the values)
Understanding Lissajous Figures
Lissajous (pronounced LEE-suh-zhoo) figures were discovered by the French physicist Jules Antoine Lissajous. He would use sounds of different frequencies to vibrate a mirror. A beam of light reflected from the mirror would trace patterns which depended on the frequencies of the sounds. Lissajous' setup was similar to the apparatus which is used today to project laser light shows.
Before the days of digital frequency meters and phase-locked loops, Lissajous figures were used to determine the frequencies of sounds or radio signals. A signal of known frequency was applied to the horizontal axis of an oscilloscope, and the signal to be measured was applied to the vertical axis. The resulting pattern was a function of the ratio of the two frequencies.
Lissajous figures often appeared as props in science fiction movies made during the 1950's. One of the best examples can be found in the opening sequence of The Outer Limits TV series. ("Do not attempt to adjust your picturewe are controlling the transmission.") The pattern of criss-cross lines is actually a Lissajous figure.

48. Exercícios Figuras De Lissajous
Translate this page t + f y ). A trajetória da partícula não é mais uma elipse, mas sim uma linhadenominada de curva de lissajous, em honra de jules Antoine lissajous que foi
http://www.cefetba.br/fisica/NFL/FGE2/lissajous.html

49. J-Walk Blog:  Lissajous Lab
lissajous (pronounced LEEsuh-zhoo) figures were discovered by theFrench physicist jules Antoine lissajous. He would use sounds
http://j-walkblog.com/blog/index/P9866/
Home
About

FAQ

Search
...
Blogs I Read

Links in new window
VIEW BY DAY
March 2003 S M T W T F S
OTHER VIEWS
Monthly Archives
View By Category

View A Random Entry

View Comments
STATS
Total entries: 6405
Total comments: 8934
Views in '04: 995714 Click the icon below for more stats.
MISCELLANEOUS
Coming to you from San Diego, CA. Original content ©2004, John Walkenbach. "Reducing corporate productivity for 594 days." Powered by pMachine
Friday, 21 March, 2003
Lissajous Lab
Create amazing animated images with this incredible interactive Java app. Lissajous (pronounced LEE-suh-zhoo) figures were discovered by the French physicist Jules Antoine Lissajous. He would use sounds of different frequencies to vibrate a mirror. A beam of light reflected from the mirror would trace patterns which depended on the frequencies of the sounds. Lissajous' setup was similar to the apparatus which is used today to project laser light shows. If you like this sort of thing, download a copy of my Hypocycloid Chart app for Excel which proves that all Excel apps aren't boring. Posted on 21 Mar, 2003 @ 12:51 am

50. Tobias Preußer - Lissajous Figuren
Translate this page gleichzeitig in zwei aufeinander senkrecht stehenden Ebenen schwingen kann, beobachtetman lissajous-Figuren, die zuerst von jules Antoine lissajous 1857 in
http://cips02.physik.uni-bonn.de/~preusser/applets/lissajous/lissajous.html
Lissajous Figuren
Bei einem System, das gleichzeitig in zwei aufeinander senkrecht stehenden Ebenen schwingen kann, beobachtet man Lissajous-Figuren, die zuerst von Jules Antoine Lissajous 1857 in Paris demonstriert wurden: Ihr Browser kann leider keine Java-Applets anzeigen. Schade.
    f (t) = A sin (w t)
    f (t) = A sin (w t + p)
Im Fall der oben zu sehenden Figuren ist die Frequenz w ganzzahliges Vielfaches der Frequenz w erfolgt alle paar Minuten neu. Die beiden maximalen Amplituden sind im Applet immer gleich. Die Phase p
Suchen Sie sich einen Punkt der Figur. Wenn die erste Schwingung nun die Amplitude hat, die Sie in diesem Punkt auf der X-Achse ablesen, dann hat die zweite Schwingung die Amplitude, die Sie in diesem Punkt auf der Y-Achse ablesen. p p Document changed last on
(preusser@cips02.physik.uni-bonn.de) 1996 Access statistics by Nedstat

51. NetLogo User Community Models: Lissajous
A color choice could be added. CREDITS AND REFERENCES. jules Antoine lissajous(*1822 +1880) french physician. User Comments. no user comments. Name Comment
http://ccl.northwestern.edu/netlogo/models/community/Lissajous
Home Page
Download

Models Library

Community Models

User Manual:
HTML

Printable (PDF)

FAQ

Contact Us
NetLogo User Community Models
(back to the NetLogo User Community Models)
Lissajous
by Paul Rieger (Submitted: 12/21/2003) Run Lissajous in your browser
uses NetLogo 2.0.1
requires Java 1.4.1+ system requirements Download Lissajous If clicking does not initiate a download, try right clicking or control clicking and choosing "Save" or "Download". Note: If you have trouble running the model in your browser, you may wish to download the application instead. WHAT IS IT? Plot Lissajous-figures on the screen. A mass-point is distraced by two forces. One takes effect in the x-direction the other in the y-direction. These forces are controlled by different sinusoidal functions and the resolving curve of the mass point is drawn in the graphics-window. HOW IT WORKS An invisible turtle is generated and the position is calculated. The following positions are visualized while the turtle marks its way in green color. HOW TO USE IT Xfreq, Yfreq: Sliders to adjust the frequency in the x- and y-direction.

52. Ein Multimediales Nachschlagewerk - Die Erfinder - L
lissajous, jules-Antoine,1822 bis 1880; Physiker; Lister, Sir Joseph, 1827 bis 1912; Arzt;
http://www.sit.fraunhofer.de/schulen/materialien/lexikon_htm/erfin_L.htm
L - wie Lagrange
Hinweis: "Back-Taste"
  • Lagrange, Joseph-Louis, 1736 bis 1813; Mathematiker
  • Lahmeyer, Wilhelm, 1859 bis 1907; Elektrotechniker und Unternehmer
  • Lambert, Jahann Heinrich, 1728 bis 1777; Mathematiker und Physiker
  • Lampadius, Wilhelm August, 1772 bis 1842; Chemiker und Technologe
  • Land , Edwin Herbert, 1909 bis 1991; Physiker (in English!)
  • Landau , Lew Dawidowitsch, 1908 bis 1968; Physiker (in English!)
  • Langen, Eugen, 1833 1895; Techniker
  • Langmuir , Irving, 1881 bis 1957; Physiker und Chemiker (in English!)
  • Laplace, Pierre-Simon, 1749 bis 1827; Mathematiker und Astronom
  • Latour, Charles Cagniard, 1777 bis 1859; Ingenieur und Geograph
  • Laue, Max von, 1879 bis 1960; Physiker
  • Laurent, Auguste, 1807 bis 1853; Chemiker
  • Laval, Carl Gustav de, 1845 bis 1913; Techniker
  • Lavoisier, Antoine-Laurent, 1743 bis 1794; Chemiker
  • Lawrence , Ernest Orlando, 1901 bis 1958; Physiker (in English!)
  • Lear , William P., 1902 bis 1978; Radiotechniker (in English!)
  • Lebedew, Alexander Alexejewitsch, 1893 bis 1969; Chemiker
  • Lebedew, Piotr Nikolajewitsch, 1866 bis 1912;Physiker
  • Lebedew, Sergei Wassiljewitsch, 1874 bis 1934; Chemiker

53. ListeDeJulesPourUnPetitJules
jules Ladoumègues, sportif; jules Laforgue, poète;jules Léger; jules lissajous, physicien; jules Marey, scientifique;
http://www.echolalie.org/wiki/index.php?ListeDeJulesPourUnPetitJules

54. Lissajous
It was composed in 1978 in honor to the French physicist julesAntoine Lissajouswho built an instrument for measuring frequency based on the shape of
http://www.cic.unb.br/docentes/arcela/portfolios/portfolios/visualmusic/tonaltim
Image 5 / 7
Lissajous next image [tonal timbres] Description The geometry defined by the timbre of a mathematical instrument based on the 4:5 just major Third interval. It was composed in 1978 in honor to the French physicist Jules-Antoine Lissajous who built an instrument for measuring frequency based on the shape of orthogonal vibration compositions. Keywords Musical intervals, orthogonal instrument, instrument inner geometry. Creation date September 23, 1995. Original Media Computer program. Location

55. Joost Rekveld | Symmetry And Harmonics
The patterns generated by the kaleidophone were described in more detail by themathematician and physicist jules lissajous, later in the nineteenth century.
http://www.lumen.nu/rekveld/texts/symhar.html
symmetry and harmonics
Joost Rekveld, Rotterdam, 24-11-1998 figure 1:
mirror cabinet of Z.Traber, 1675 harmonic images Pure intervals are pure for a physical reason: if the ratio of frequencies of two soundwaves can be described in small numbers, the minima and maxima of these waves overlap nicely. This makes a chord sound at rest. If the ratio of frequencies is more complex, these overlaps form a more complex pattern and the tones do not blend properly or a difference tone appears. Similar phenomena occur if images are generated using vibrations. Several physicists from the 19th century did experiments in this direction. Ernst Chladni wrote his book 'Entdeckungen im Reich des Klanges' in 1787. It is the first general treatise on acoustics. He illustrated it with diagrams of the vibrations of thin metal plates (fig. 2). For these experiments he covered the plates with a thin layer of sand and made them vibrate by striking them with a bow. The vibrations displaced the sand toward the locations on the plate where the waves in the metal formed 'knots'. Chladni analized these sandpatterns, classified them according to shape and tried to understand the relationship with their corresponding pitch. He concluded that a vibrating plate generates a set of tones (fundamental and harmonics) that corresponds with the harmonic series produced by a vibrating string. figure 2: sound figures by Chladni, 1787

56. Wikino - Lissajous-Figur - Lexikon
Translate this page Schwingungen entstehen. Sie sind benannt nach ihrem Entdecker, demfranzösischen Physiker jules Antoine lissajous (1822-1880). In
http://www.wikino.net/Lissajous-Figur.html
Startseite Aktuelle Ereignisse Kürzlich Verstorbene Jahrestage/Jubiläen ... Domainendungen
Lissajous-Figur
Wikino - Enzyklopädie
Lissajous-Figuren sind Kurvengraphen, die durch Überlagerung harmonischer Schwingungen entstehen. Sie sind benannt nach ihrem Entdecker, dem französischen Physiker Jules Antoine Lissajous ). In jüngerer Zeit spielten sie zum Beispiel bei der Untersuchung von Wechselströmen mit Hilfe des Oszilloskops eine Rolle.
Mathematische Präzisierung
Mathematisch handelt es sich um parametrische Schaubilder von Funktionen der Form Diese Funktionen sind genau dann periodisch , wenn das Frequenzverhältnis rational ist. Dann schließt sich die Kurve bereits bei endlichem t Die Amplituden A x und A y skalieren die Figuren lediglich horizontal beziehungsweise vertikal. Ansonsten hängt das Erscheinungsbild der Graphen nur noch vom Frequenzverhältnis v und der Phasendifferenz ab.
Übersicht über einige Lissajous-Figuren
Die folgende Tabelle zeigt einige der einfachsten Lissajous-Figuren. Dabei wird der Einfachheit halber A x A y angenommen.

57. Neue Seite 1
Translate this page Phase f ab. Diese Figuren heißen lissajousfiguren. Sie sind nach demfranzösischen Physiker jules lissajous (1822-1880) benannt.
http://www.fh-niederrhein.de/~gkorsch/if1100/lissa/
Lissajous-Figuren in Java Andreas Breuer 1.Was sind Lissajous-Figuren ? /f der Schwingungen und ihrer relativen Phase f x(t) = sin(f y(t) = sin(f f 2. Das Java-Programm Canvas Thread Der Thread ist im allgemeinen ein parallel ablaufender Prozess. Erzeugung eines Threads: public class lis extends JApplet implements Runnable a) Ein Thread-Objekt deklarieren (in der Hauptklasse): Thread motor; b) Das Thread-Objekt erzeugen (im Fensterkonstruktor): motor= new Thread(this); c) Den Thread starten (am Ende des Fensterkonstruktors): 3. Der eigentlich Antrieb des Motors (Threads) ist die run-Methode die so aussieht
Diese Zeit wird in Millisekunden angegeben.
Das geschieht mit folgendem Befehl: motor.sleep(100); Endlosschleife Dieser Schutz besteht zwei Zeilen:
Wird in try kein Fehler registriert, macht Java nach catch weiter. 3.Aufgabe und Programmaufbau: 3. Der Quelltext der Applikation:
sowie die swing-Komponenten. Da wir mit einem Thread arbeiten wollen, implementieren wir das Interface "Runnable".
Die anderen benötigten Objekte sind "myCanvas" (Zeichenfeld)

58. Measurement Techniques
The waveform resulting from this arrangement is called a lissajous pattern (namedfor French physicist jules Antoine lissajous and pronounced LEEsa-zhoo).
http://www.cs.tcd.ie/courses/baict/bac/jf/labs/scope/meastech.html
Measurement Techniques
This section teaches you basic measurement techniques. The two most basic measurements you can make are voltage and time measurements. Just about every other measurement is based on one of these two fundamental techniques. This section discusses methods for taking measurements visually with the oscilloscope screen. Many digital oscilloscopes have internal software that will take these measurements automatically. Knowing how to take the measurements manually will help you understand and check the automatic measurements of the digital oscilloscopes.
The Display
Take a look at the oscilloscope display. Notice the grid markings on the screen - these markings create the graticule . Each vertical and horizontal line constitutes a major division . The graticule is usually laid out in an 8-by-10 division pattern. Labeling on the oscilloscope controls (such as volts/div and sec/div) always refers to major divisions. The tick marks on the center horizontal and vertical graticule lines (see Figure 1) are called minor divisions. Many oscilloscopes display on the screen how many volts each vertical division represents and how many seconds each horizontal division represents. Many oscilloscopes also have 0%, 10%, 90%, and 100% markings on the graticule (see Figure 1) to help make rise time measurements

59. Figure De Lissajous
Translate this page Du nom de jules Antoine lissajous, physicien français, 1822-1880. Dictionnaire desarts médiatiques © 1996, Groupe de recherche en arts médiatiques - UQAM,
http://www.comm.uqam.ca/~GRAM/C/term/mus/must199.html
figure de Lissajous
Lissajous figures
MUSIQUE - (n.f.) 1. Dispositif optique permettant d'observer un spot lumineux soumis à des vibrations. 2. Figure obtenue en mettant en relation les variations d'amplitude de deux signaux qui partagent la même fonction temps dans un oscilloscope. La figure de Lissajous est couramment utilisée en stéréophonie, car cette mesure permet de mettre en relation la phase des signaux provenant des deux canaux.
Du nom de Jules Antoine Lissajous, physicien français, 1822-1880.

60. Cymatics - The Science Of The Future?
(se below right) This after the French mathematician julesAntoine lissajous,who, independently of Bowditch, investigated them in 1857-58.
http://www.mysticalsun.com/cymatics/cymatics.html
Is there a connection between sound, vibrations and physical reality? Do sound and vibrations have the potential to create? In this article we will see what various researchers in this field, which has been given the name of Cymatics, have concluded.
By Peter Pettersson, translation Yarrow Cleaves
n 1787, the jurist, musician and physicist Ernst Chladni published or Discoveries Concerning the Theory of Music. With the help of a violin bow which he drew perpendicularly across the edge of flat plates covered with sand, he produced those patterns and shapes which today go by the term Chladni figures. (se left) What was the significance of this discovery? Chladni demonstrated once and for all that sound actually does affect physical matter and that it has the quality of creating geometric patterns. Lissajous Figures In 1815 the American mathematician Nathaniel Bowditch began studying the patterns created by the intersection of two sine curves whose axes are perpendicular to each other, sometimes called Bowditch curves but more often Lissajous figures.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 3     41-60 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter