Geometry.Net - the online learning center
Home  - Scientists - Ibn Al-banna
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Ibn Al-banna:     more detail
  1. Astronome Arabe: Alhazen, Thabit Ibn Qurra, Muhammad Al-Fazari, Al-Battani, Taqi Al-Din, Abu Muhammad Al-Hasan Al-Hamdani, Ibn Al-Banna (French Edition)
  2. Hayat wa-muallafat Ibn al-Banna al-Murrakushi: Maa nusus ghayr manshurah (Manshurat Kulliyat al-Adab wa-al-Ulum al-Insaniyah bi-al-Rabat) (Arabic Edition) by Ahmad Jabbar, 2001
  3. Egyptian Sufis: Hassan Al-Banna, Shawni, Dhul-Nun Al-Misri, Abul Abbas Al-Mursi, Ibn 'ata Allah, Amir Allis, Sharani
  4. Maan ala tariq al-dawah: Shaykh al-Islam Ibn Taymiyah wa-al-Imam al-shahid Hasan al-Banna (Silsilat "Nahwa al-nur") (Arabic Edition) by Muhammad Abd al-Halim Hamid, 1989
  5. Until You Return to Practising Your Deen by SHIEKH MUHAMMAD ABDULWAHAB MARZOOQ AL-BANNA, 2009
  6. Islam: An entry from Gale's <i>Worldmark Encyclopedia of Religious Practices</i> by John Esposito, 2006

21. Biography-center - Letter I
I. 53 biographies. ibn albanna, www-history.mcs.st-and.ac.uk/~history/Mathematicians/Al-Banna.html;ibn Ishaq Hunayn, www-history.mcs
http://www.biography-center.com/i.html
Visit a
random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
I
53 biographies

22. Mes De Ramadán
Translate this page Sheik Abu Nasr Muhammad ibn al-banna me ha informado, en la buena autoridad tradicional,que fue Abu Huraira (quiera Allah estar complacido con él) quién
http://www.sufismo.net/primera/ramad/ram9.htm
Acerca de las excelentes cualidades que son peculiares al Mes de Ramadan
Al-Ghunya li-Talibi Tariq al-Haqq,
Hz. Abdul Qadir al Jilani
"O Gente, un mes poderoso ha echado su sombra protectora para cubrirlos. ¡Un mes bendito, un mes en que hay una noche que es mejor que mil meses! Allah ha hecho del ayuno un deber religioso obligatorio, y la observancia de la vigilia nocturna una práctica voluntaria. Si alguien busca estar cerca del Señor simplemente poniendo en acción un ejemplo de buena conducta o realizando una obligación religiosa, esa persona estará exactamente igual que alguien que realice setenta obligaciones religiosas durante todos los otros meses del año. Es el mes de resistente paciencia, y el premio para la resistente paciencia es el Jardín del Paraíso. Es el mes de compartir y dar caridad, y es el mes en que el sustento del verdadero creyente es aumentado. Así, si alguien da una comida de desayuno a una persona que está guardando el ayuno, esto producirá el perdón de sus pecados, y su emancipación del Fuego del Infierno. El bienhechor también le será concedido un premio equivalente a lo ganado por el destinatario de su generosidad, pero sin que reduzca en absoluto el premio obtenido por este último".

23. Abundant Number -- From MathWorld
Souissi, M. Un Texte Manuscrit d ibn albanna Al-Marrakusi sur les Nombres Parfaits,Abondants, Deficients, et Amiables. Karachi, Pakistan Hamdard Nat.
http://mathworld.wolfram.com/AbundantNumber.html
INDEX Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics ... Alphabetical Index
ABOUT THIS SITE About MathWorld About the Author
DESTINATIONS What's New MathWorld Headline News Random Entry ... Live 3D Graphics
CONTACT Email Comments Contribute! Sign the Guestbook
MATHWORLD - IN PRINT Order book from Amazon Number Theory Special Numbers Digit-Related Numbers ... Finch
Abundant Number
An abundant number is an integer n which is not a perfect number and for which
where is the divisor function and s n ) is the restricted divisor function. The quantity is sometimes called the abundance . The first few abundant numbers are 12, 18, 20, 24, 30, 36, ... (Sloane's ). Abundant numbers are sometimes called excessive numbers. There are only 21 abundant numbers less than 100, and they are all even . The first odd abundant number is
That 945 is abundant can be seen by computing
Any multiple of a perfect number or an abundant number is also abundant. Every number greater than 20161 can be expressed as a sum of two abundant numbers. Define the density function
for a positive real number x where gives the cardinal number of the set B , then Davenport (1933) proved that A x ) exists and is continuous for all x , and Erdos (1934) gave a simplified proof (Finch 2003). The special case

24. Blog Matematico
ibn al-banna de Marrakech (1256-1321), e
http://alpha01.dm.unito.it/personalpages/cerruti/aprile-maggio-03.html
Blog Matematico di Umberto Cerruti
E' possibile consultare l' archivio degli articoli precedenti. Math News Home
31 maggio 2003
Numeri amicali
Due interi positivi m,n si dicono amicali (in inglese amicable ) se: s (m) = s (n) = m + n dove s (x) è la somma di tutti i divisori di x Se definiamo la funzione f(x): f(x) = somma dei divisori di x minori di x equivalentemente f(x) = s (x) - x allora m,n sono amicali se e solo se n = f(m) m = f(n) La prima coppia di numeri amicali che si incontra è (220, 284). Infatti: f(220) = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 f(284) = 1 + 2 + 4 + 71 + 142 = 220 Questa coppia era nota già a Pitagora, e forse prima.
Il grande matematico arabo Al-Sabi Thabit ibn Qurra al-Harrani (826-901) dimostrò il notevole teorema: fissato n intero positivo, se i numeri: p = 3 2 n-1 - 1 q = 3 2 n - 1 r = 9 2 - 1 sono tre primi dispari, allora la coppia (a,b) con a = 2 n pq e b = 2 n r è una coppia di numeri amicali Si tengano a mente due fatti:
1) dato un certo n si ottiene una coppia amicale solo se p, q, r sono tutti primi
2) non tutte le coppie amicali provengono da questo teorema; per esempio (1184, 1210) non si trova.

25. R.105 - IREM De Rouen
ibn al-banna de Marrakech (1256-1321) ». Ce documentpropose de découvrir quelques chapitres des oeuvres d ibn al-banna.
http://www.univ-rouen.fr/sciences/IREM/r105.html
A cadémie de R ouen www.ac-rouen.fr I nstitut de R echerche sur l' E nseignement des M athématiques U niversité de R ouen www.univ-rouen.fr
R.105
IREM de Rouen M issions R éseau IREM ... ommaire Manifestations R allye 04 A rchives Autres sites M aths Rouen M aths IUFM ... PMEP « Quelques aspects des maths d'Ibn al-Banna de Marrakech (1256-1321) » Auteur(s) : Éditeur : IREM de Rouen, Rouen, 1995. Résumé : Ce document propose de découvrir quelques chapitres des oeuvres d'Ibn al-Banna.
La mise en parallèle des textes intégraux ( donnés dans leurs traductions françaises ) et de multiples commentaires mathématiques et culturels, permet de se familiariser avec quelques aspects du savoir mathématique de ce XIIIème siècle. Mots-clés : Histoire des mathématiques - mathématiques arabes.
Publications Recherche par mots-clés Christian Charras le 9 avril 2001

26. PUBLICATIONS - IREM De Rouen
ibn al-banna de Marrakech (1256-1321). Fiche, 9.15 €, 60 F.
http://www.univ-rouen.fr/sciences/IREM/publications.html
A cadémie de R ouen www.ac-rouen.fr I nstitut de R echerche sur l' E nseignement des M athématiques U niversité de R ouen www.univ-rouen.fr
PUBLICATIONS
IREM de Rouen M issions R éseau IREM ... ommaire Manifestations R allye 04 A rchives Autres sites M aths Rouen M aths IUFM ... (ADIREM - APMEP) Documents IREM de Rouen Malgé le soin apporté à sa rédaction, ce document est non contractuel Seul le  bon de commande  émis par l'IREM de Rouen fait foi R.46 Géométrie : une approche par le dessin géométrique au CM. 30 F  R.47 Jacques Bernoulli et l'ars conjectandi. 100 F  R.51 La proportionnalité existe, je l'ai rencontrée. 40 F  R.53 Physique. Tome 1. Conférences. 40 F  R.54 Physique. Tome 2. Textes étudiés. 40 F  R.56 13 problèmes d'analyse. 15 F  R.57 Actes du colloque de Rouen, 26-27-28 mai 1988 - Didactique des mathématiques - Evaluation des apprentissages. 75 F  R.59 Math et Info au C.M. : 10 séances en classe. 35 F  R.60 Découvrir les mathématiques arabes. 80 F  R.62 De la figure vers la démonstration Tome I. 25 F  R.63 Petite bibliographie de documents statistiques dans les IREM. 10 F  R.64

27. Muslims And Maths
A commentary on his treatise on arithmetic, written by ibn albanna, gained muchpopularity and was published in French by A. Narre in 1864 and reprinted in
http://www.geocities.com/WestHollywood/Park/6443/Maths/maths.html
Muslims and Maths
Muslims have made immense contributions to almost all branches of the sciences and arts, but mathematics was their favourite subject and its development owes a great deal to the genius of Arab and persian scholars. The advancement in different branches of mathematical science commenced during the Caliphate of Omayyads, and Hajjaj bin Yusuf, who was himself a translator of Euclid as well as a great patron of mathematicians.
Translations
Arithmetic
Arabs were the founders of every day arithmetic and taught the use of ciphers to the world.
Musa al-Khwarizmi (780850 A.D.) a native of Khwarizm, who lived in the reign of Mamun-ar-Rashid, was one of the greatest mathematicians of all times. He composed the oldest Islamic works on arithmetic and algebra which were the principal source of knowledge on the subject for a fairly long time. George Sarton pays glowing tribute to this outstanding Muslim mathematician and considers him "one of the greatest scientists of his race and the greatest of his time".' He systematised Greek and Hindu mathematical knowledge and profoundly influenced mathematical thought during mediaeval times. He championed the use of Hindu numerals and has the distinction of being the author of the oldest Arabic work on arithmetic known as Kitab-ul Jama wat Tafriq. The original version of this work has disappeared but its Latin translation Trattati a" Arithmetic edited by Bon Compagni in 1157 at Rome is still in existence.

28. OnTab Online: Tabel 51
850. Bhaskara, 1114 ca. 1185. Leonardo van Pisa (Fibonacci), ca. 1170 - na 1240.ibn al-banna, 1256 - 1321. Zhu Shijie, ca. 1303. Pacioli, Fra Luca, ca. 1445 - 1517.
http://www.casia.nl/OnTab/tabel51.html
51. Wiskundigen
Ahmes ca. 1650 vC Pythagoras ca. 540 vC Hippocrates ca. 440 vC Plato ca. 430 vC - ca. 349 vC Hippias ca. 425 vC Theaethetus ca. 417 vC - ca. 369 vC Archytas ca. 400 vC Xenocrates 396 vC - 314 vC Theodorus ca. 390 vC Aristoteles 384 vC - 322 vC Menaechmus ca. 350 vC Euclides ca. 300 vC Archimedes ca. 287 vC - ca. 212 vC Nicomedes ca. 240 vC Eeratosthenes ca. 230 vC Diocles ca. 180 vC Hipparchus ca. 180 vC - ca. 125 vC Hero van Alexandrie ca. 75 Ptolemaeus ca. 85 - ca. 165 Nicomachus van Gerasa ca. 100 Theoon van Smyrna ca. 125 Diophantus 1ste of 3de eeuw Pappus ca. 320 Iamblichus ca. 325 Produs Zu Chongzhi Brahmagupta ca. 628 Al-Chwarizmi ca. 825 Thabit ibn Qurra Mahavira ca. 850 Bhaskara 1114 - ca. 1185 Leonardo van Pisa
(Fibonacci) ca. 1170 - na 1240 Ibn Al-Banna Zhu Shijie ca. 1303 Pacioli, Fra Luca ca. 1445 - 1517 Vinci, Leonardo da Durer, Albrecht Stifel, Michael Tartaglia, Niccolo ca. 1500 - 1557 Cardano, Girolamo

29. Ayuntamiento:Presentación De La Ciudad
IbnHayyan, filólogo, al-Qalasadi, matemático, ibn al-banna, jurisconsulto, al
http://www.granada.org/inet/wgr.nsf/0/1a0d4bdfae53a3f3c1256e31007ba6dc?OpenDocum

30. Online Islamic Store
behaviour and their pure good manners. This book is the commentary by Shaykh Ahmadibn Muhammad ibn Ajiba alHasani on the poem of ibn al-banna of Saragossa.
http://onlineislamicstore.com/b7914.html
Quran Studies Comparative Azan Clock Toys ... Price Range $35.00 - $50.00 The Basic Research : English translation of al Futuhat al Ilahiyya fi Sharh al Mabaahith al-Asliyya (Shaykh Ahmad ibn 'Ajiba)
The Basic Research : English translation of al Futuhat al Ilahiyya fi Sharh al Mabaahith al-Asliyya (Shaykh Ahmad ibn 'Ajiba)

Retail Price: $49.95
"Our Price": Qty:
Send this page to a friend!
ISBN:
Author:
Shaykh Ahmad ibn 'Ajiba; Abdalkhabir al-Munawwarah and Haj Abdassabur al-Ustadh (translators); Shaykh Abdalqadir as-Sufi al-Murabit (editor)
Publisher: Madinah Press (1998)
Pages: Binding: Hardcover w/ jacket
Description from the publisher:
"To travel the path of courtesy and instruction is before everything and the mightiest means to Allah. The most direct access for the slave of his Lord is to keep company with the gnostics, those who have high yearning and prophetic instruction, and to have courtesy between the hands of the shaykhs who have no blemish and are pure and who know the stations and states of worshippers, zahids, fuqara and sufis. Research their behaviour and states. and take on their highly pleasing courtesy. Realise their behaviour and their pure good manners."
This book is the commentary by Shaykh Ahmad ibn Muhammad ibn 'Ajiba al-Hasani on the poem of Ibn al-Banna of Saragossa.

31. History And Civilization
(41 BP64.Z3A2); Abu Ali ibn albanna, 1005-1100 Autography diary ofan eleventh-century historian of Baghdad by George Makdisi, 1958.
http://pkukmweb.ukm.my/~library/histciva.htm
History and Civilization
  • 'Abd al-Basit, ibn Khalil al-Malati, 1440-1514 Deux recits de voyage inedits en Afrique du Nord au XVe siecle. Paris : Larose, 1936.
  • 'Abd al-Latif, 1160-1231 Relation de l'Egypte. Paris : Imprimerie Imperiale, 1810.
  • 'Abd Aziz, Muhammad Japan's colonialism and Indonesia. 's-Gravenhage : M. Nijhoff, 1955.
  • Abel, Armand La citadelle Eyyubite de Bosra Eski Cham. Damas, 1956.
  • Abel, Armand Les Musulmans noirs du Maniema, Bruzelles, Publications du centre pour l'etude des problemes du monde Musulman contemporain, 1959.
  • Abu Ali Ibn al-Banna, 1005-1100 Autography diary of an eleventh-century historian of Baghdad by George Makdisi, 1958.
  • Abu Makramah, 1465-1540 Political history of the Yemen at the beginning of the 16th century : Abu Makramah's account of the years 906-927H. (1500-1501 A. D.) with annotations by Lein Oebele Schuman...
  • Abu Nu'aym Ahmad ibn 'Abd Allah, 948-1038 Gschichte Isbahans : nach der leidener handscrift herausgegeben von Sven Dedering. Leiden : E. J. Brill, 1934.
  • Adam, L.

32. Collection De Nombres, Nombres Amiables Et Sociables, Suite Aliquote
ibn al-banna (XIV e ).n = 7. 9 363 584 9 437 056. Muhammad Baquir Yazdi (XVII e ). Exemple pourn= 2
http://www.multimania.com/villemingerard/Decompos/Amiable.htm
Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: SOS je suis Débutant Rubrique: Nombres Présentation Parfait Presque parfait Amiables ... Sublimes Sommaire de cette page NOMBRE AMIABLES ET SOCIABLES HISTORIQUE LISTE DES NOMBRES AMIABLES À 5 CHIFFRES PROPRIÉTÉS CRITÈRE DE THABIT TRIPLET AMIABLES NOMBRES SOCIABLES OU CHAÎNES AMIABLES HISTORIQUE ET RECORDS CHAÎNE ALIQUOTE Pages voisines Nombres économes, équidistants et prodigues Théorie des nombres Calcul mental Géométrie NOMBRES AMIABLES ET SOCIABLES ou Nombres Amicaux sortes de nombres parfaits mutuels Il sont très rares On en connaît une centaine seulement Anglais : Amicable numbers NOMBRE AMIABLES ET SOCIABLES Chaque nombre est la somme des diviseurs propres de l'autre Le nombres amiables et sociables sont une généralisation de la notion de nombres parfaits. Exemple Paires Diviseurs propres 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 et 110 1, 2, 4, 71 et 142 Somme des diviseurs et 284 forment la première paire amiable On note Paires Diviseurs propres 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 et 110 1, 2, 4, 71 et 142

33. IDD Héritage Du Monde Arabe : Linguistique Mots Mathématiques Dénombrement
Translate this page Ces études vont être reprise par des mathématiciens (Ibn Mun im, ibn al-banna)et vont constituer une nouvelle branche des mathématiques, l’analyse
http://www.ac-versailles.fr/pedagogi/Lettres/IDD_HMA_ling_maths.htm
par Mmes De Roeck et Gougeon Boussy-Saint-Antoine (Essonne)
Philologi Introduction :
Des mots en al-
alb a tros,
au hasard
D'origine arabe : Alambic
Alchimie
Alcool
Alfa
Algarade
Amande Abricot Aubergine Constat et Conclusion du 1): A retenir : initiation au raisonnement 3) Combien de mots (ayant un sens ou non) peut-on former avec n lettres, chaque lettre apparaissant exactement une seule fois dans le mot ? (n est un nombre entier) Accueil

34. Prijateljsko Å¡tevilo - Wikipedija
Pred njim so ta par odkrili že Tabit in okoli leta 1300 tudi ibn albannain Farisi. 7. najmanjši par (12.285, 14.595) je našel leta 1939 Brown.
http://sl.wikipedia.org/wiki/Prijateljsko_Å¡tevilo
Iz Wikipedije, proste enciklopedije. Prijateljski števili sta v matematiki celi števili , katerih vsota njunih pravih deliteljev je križno enaka takšni vsoti drugega števila. Prvi takšen par je 220 in 284. Množica pitagorejcem in ti so jim pripisovali veliko skrivnostnih pomenov in lastnosti. Splošno enačbo za prijateljska števila je okoli leta našel Tabit ibn Kora ): če označimo
p n q n-1 n q n n r n n
kjer je n p n q n in r n so praštevila , potem sta (2 n p n q n n r n ) par prijateljskih števil. Število q n se včasih imenuje Tabitovo število n ) = 2, 4, 7, kar da tri praštevila ( p q r ) = (5, 11, 71), (23, 47, 1.151), (191, 383, 73.727), in prijateljske pare (220, 284), (17.296, 18.416) in (9.463.584, 9.437.056). Te vrednosti, ki rešijo Tabitovo enačbo so edine znane. Tudi par (6.232, 6.368) je prijateljski, vendar ga enačba ne najde. Enačbo sta ponovno odkrila de Fermat leta in Descartes ) leta , posplošil pa jo je Euler . Števili (2 n p m,n q m,n n r m,n ) sta prijateljski, če so vsa števila oblike:
p m,n m n m q m,n n n m r m,n n m n m
praštevila, za poljubno celo število

35. Full Alphabetical Index
Translate this page 2847*) al-Khujandi, Abu (713) al-Kindi, Abu (1151) al-Kuhi, Abu (1146) al-Maghribi,Muhyi (602) al-Mahani, Abu (507) al-Marrakushi, ibn al-banna (861) al-Nasawi
http://www.maththinking.com/boat/mathematicians.html
Full Alphabetical Index
Click below to go to one of the separate alphabetical indexes A B C D ... XYZ The number of words in the biography is given in brackets. A * indicates that there is a portrait.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (2899*)
Abraham
bar Hiyya (641)
Abraham, Max

Abu Kamil
Shuja (1012)
Abu Jafar

Abu'l-Wafa
al-Buzjani (1115)
Ackermann
, Wilhelm (205)
Adams, John Couch

Adams, J Frank

Adelard
of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (861) al-Nasawi , Abu (681) al-Nayrizi , Abu'l (621) al-Qalasadi , Abu'l (1247) al-Quhi , Abu (1146) al-Samarqandi , Shams (202) al-Samawal , Ibn (1569) al-Sijzi , Abu (708) al-Tusi , Nasir (1912) al-Tusi , Sharaf (1138) al-Umawi , Abu (1014) al-Uqlidisi , Abu'l (1028) Albanese , Giacomo (282) Albategnius (al-Battani) (1333*)

36. Euler
El següent pas en aquest tema, va arribar al segle XIII, quan el matemàtic àrabibn albanna, va descobrir el parell 17.296 i 18.416, aquest cop foren
http://www.xtec.es/centres/a8046785/expo1/euler.htm
Euler Albert A. Campillo 3r d'ESO Euler, el mestre de totes les arts matemàtiques Vida Leonhard Euler va néixer a Basilea, Suïssa l’any 1707, i de ben petit ja demostrava senyals de genialitat. Va estudiar amb un dels famosos germans Bernoulli. Johann Bernoulli, que li feia de mestre i que en aquells temps era reconegut com un dels grans matemàtics del món. Euler es va graduar als 15 anys a la universitat. Quatre anys més tard va fer la seva primera aparició internacional, guanyant un premi de l’Acadèmia de les Ciències de París, per fer una impressionant anàlisi de la col·locació òptima dels pals ("mástiles") en un vaixell de passatgers (tot i que cal dir que ell mai havia vist un vaixell travessant un oceà). I Al 1727 amb només vint anys viatjava a Rússia per ocupar lloc com a catedràtic a l’Acadèmia de Sant Petersburg on va residir fins que el 1741 va rebre una oferta millor de l’Acadèmia de Berlín, on s’instal·là durant més de vint-i-cinc anys. Allí a Alemanya va mantenir contacte amb personatges tan famosos com D’Alembert, Manpertuis i Voltaire. Més tard, al 1766, retornà a Sant Petersburg fins a la seva mort al 1783 amb 76 anys, mentre que encara era un científic actiu.

37. Full Alphabetical Index
Translate this page 2847*) al-Khujandi, Abu (713) al-Kindi, Abu (1151) al-Kuhi, Abu (1146) al-Maghribi,Muhyi (602) al-Mahani, Abu (507) al-Marrakushi, ibn al-banna (12) al-Nasawi
http://alas.matf.bg.ac.yu/~mm97106/math/alphalist.htm
Full Alphabetical Index
The number of words in the biography is given in brackets. A * indicates that there is a portrait.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (2899*)
Abraham
bar Hiyya (641)
Abraham, Max

Abu Kamil
Shuja (1012)
Abu Jafar

Abu'l-Wafa
al-Buzjani (1115)
Ackermann
, Wilhelm (205)
Adams, John Couch

Adams, J Frank

Adelard
of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (12)

38. PHILOSOPHIE (retour) PHILOSOPHIE DES SCIENCES
ibn al-banna. EDITION CRITIQUE, TRADUCTION,ETUDE PHILOSOPHIQUE ET ANALYSE MATHEMATIQUE. Référence
http://www.anrtheses.com.fr/Catalogue/SCat_151.htm
PHILOSOPHIE (retour)
PHILOSOPHIE DES SCIENCES
ABALLAGH Mohmed
RAF AL-HIJAB D'IBN AL-BANNA. EDITION CRITIQUE, TRADUCTION, ETUDE PHILOSOPHIQUE ET ANALYSE MATHEMATIQUE.
Paris 1
747 pages
ABDUL HADI Ala'a
ISLAM ET ECONOMIE. REFLEXIONS SUR LES PRINCIPES FONDAMENTAUX DE L'ECONOMIE ISLAMIQUE.
Paris 1
552 pages
ABTTOUY Mohamed LA NOTION DU TEMPS CHEZ GALILEE. ETUDE HISTORICO-EPISTEMOLOGIQUE SUR L'UN DES EPISODES DE LA CONSTITUTION DE LA MECANIQUE CLASSIQUE. Paris 1 666 pages ADOM Tieba PHILOSOPHIE DE LA LUMIERE. DE LA DECOUVERTE DES PROPRIETES DE LA LUMIERE AUX GRANDS BOULEVERSEMENTS DES PENSEES SCIENTIFIQUE ET PHILOSOPHIQUE. 425 pages AHOUMA Adayé TECHNOSCIENCE-ONTOLOGIE: LA «RUPTURE SYSTEMATIQUE» EN EFFET. Reims 396 pages ISBN : 2-284-02546-3 AJZENMAN Frédéric EINSTEIN . BERGSON . FREUD . LE TEMPS. 459 pages ALLALCHA Lidia VLADIMIR VERNADSKI (1863-1945) ET L'UNITE DU VIVANT. DE LA MATIERE INORGANIQUE A LA BIOSPHERE ET A LA NOOSPHERE. Bordeaux 3 346 pages ALLEGRETTE Marcelle GOIX LES CONCEPTS DE CROISSANCE ET DE DEVELOPPEMENT EN BIOLOGIE : OBSTACLES ET REPRESENTATIONS CHEZ LES ELEVES DE COLLEGE; PROPOSITIONS DE SITUATIONS DIDACTIQUES POUVANT FACILITER L'APPRENTISSAGE. Paris 7 312 pages ISBN : 2-284-02599-4 ARMOGATHE Jean-Robert THEOLOGIA CARTESIANA. PHYSIQUE ET THEOLOGIE EN EUROPE AU XVIIème SIECLE.

39. Genetic Engineering
Totality. . ………Sayyid ibn albanna, may Allah bepleased with him. The universe is designed in a dual nature. One
http://www.nuradeen.com/CurrentIssues/GeneticEngineering.htm
Nuradeen Up Genetic Engineering Muhammedi or Sufyani Islam Comments on 09/11/01 Events Escaping the Matrix A Letter to the Editor ... Islam in Africa
Genetic Engineering
by
Hajj Mustafa Ali al-Haydari
There has been a great deal in the news lately regarding genetic engineering. This has taken place in the form of a public debate on its moral and environmental implications. The more volatile argument is in regards to human cloning. Their argument is augmented with other quasi-logic, sighting that disease is treated after the fact anyway, then nature itself has not formulated mankind in the best way , and that nature requires this intervention. They argue that it has always been a give and take with nature anyway. What has made the biggest difference now, is access to greater insights in the mechanics of nature and applied technologies. This point of view is intrinsically flawed for the following reasons: If we were to do what the scientists are suggesting, improve intellect, body and mind, through genetic engineering, where and when will it come to an end? Each time you make these improvements the benchmark and measure for the definition of humanity will be moved farther. How smart is smart enough? How strong is strong enough? If you take their logic to its conclusion, we realize that there is no conclusion. Herein lies the point. Without conclusion there is no point to life. Life itself exists within defined parameters. These parameters are set up as

40. Number Theory - Euler
For a long period of time, this was the only known pair, until theArabic mathematician ibn albanna found (17 296, 18 416). Fermat
http://members.aol.com/tylern7/math/euler-6.html
Number Theory
We shall begin by considering some of Euler's contributions to number theory. Number Theory is the area of mathematics concerned primarily with integer (sometimes rational) solutions to expressions. Prime numbers play a central role in number theory. This field was fairly undeveloped when Euler took hold of it. Most of the work until that time had been developed by the Greeks, such as Diophantus, and Pierre Fermat. perfect number is a positive integer which is exactly equal to the sum of its proper divisors. (A proper divisor of n is a positive integer less than n which evenly divides n . For example, if n is 12, the proper divisors of n are 1, 2, 3, 4, and 6. Exercise: show that the largest proper divisor of even n is n /2.) Thus 6 is a perfect number since 1, 2, and 3 are the proper divisors of 6 and 6 = 1 + 2 + 3. It turns out that the first four perfect numbers are: 6, 28, 496, 8128. (Exercise: find the next perfect number). Do you see a pattern here? Euclid did. Each of these numbers is of the form 2 n-1 n -1), where

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter