Geometry.Net - the online learning center
Home  - Scientists - Heyting Arend
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Heyting Arend:     more detail
  1. Intuitionism, An Introduction: Third Revised Edition by Arend Heyting, 2011-01-20
  2. Constructivity in mathematics: Proceedings of the colloquium held at Amsterdam, 1957 (Studies in logic and the foundations of mathematics) by Arend Heyting, 1959
  3. Kolmogorov, Heyting and Gentzen on the intuitionistic logical constants *.: An article from: Crítica by Gustavo Fernandez Diez, 2000-12-01
  4. Semantical Investigations in Heyting's Intuitionistic Logic (Synthese Library) by Dov M. Gabbay, 1981-03-31
  5. ERKENNTNIS, Zugleich Annalen der Philosophie... BAND 2, HEFT 2-3, 1931; Bericht über die 2. Tagung für Erkenntnishlehre der exakten Wissenschaften Königsberg 1930 by Rudolf & Hans Reichenbach, eds. Arend Heyting, Johann von Neumann, Otto Carnap, 1931
  6. Mathematische Grundlagenforschung Intuitionismus-Beweistheorie by A. [Arend] HEYTING, 1980

41. CONFERENCES, SUMMER SCHOOLS, TALKS, WORKSHOPS [1] Eindhoven 23
FOR PARTICIPATION 7 Amsterdam (The Netherlands) 1426 September 1998 arend heytingCentenary PROGRAM heyting Lectures, heyting Symposium, Thematic Day 8
http://colibri.let.uu.nl/html/html.24-1998/general.html
CONFERENCES, SUMMER SCHOOLS, TALKS, WORKSHOPS Eindhoven 23 June 1998 ZIC Colloquium on Logic and Theoretical Computer Science dr. ir. Hans de Nivelle: "Implementation of a resolution theorem prover" Montpellier (France) 10-12 August 1998 ICCS'98 6th International Conference on Conceptual Structures CALL FOR PARTICIPATION Saarbruecken (Germany) 14-16 August 1998 FHCG-98 Joint Conference on Formal Grammar, Head-driven Phrase Structure Grammar and Categorial Grammar PROGRAM Saarbruecken (Germany) 14-16 August 1998 FHCG-98 Joint Conference on Formal Grammar, Head-driven Phrase Structure Grammar and Categorial Grammar PROGRAM Melbourne (Australia) 28 August 1998 ACM-SIGIR'98 Post-Conference Workshop on "Multimedia Indexing and Retrieval" EXTENDED Deadline: 19 June 1998 Freiburg (Germany) 7-9 September 1998 LD'98 The First International Workshop on Labelled Deduction http://www.informatik.uni-freiburg.de/~ld98 CALL FOR PARTICIPATION Amsterdam (The Netherlands) 14-26 September 1998 Arend Heyting Centenary PROGRAM: Heyting Lectures, Heyting Symposium, Thematic Day

42. HISTOIRE DE LA LOGIQUE- LA LOGIQUE MATHÉMATIQUE
Translate this page preuve ou de justification jouent un rôle fondamental. arend heyting(1898-1980). On développera donc dans les années 1930 une
http://logique.uqam.8m.com/histoire10.htm
Free Web site hosting - Freeservers.com Web Hosting - GlobalServers.com Choose an ISP NetZero High Speed Internet ... Dial up $14.95 or NetZero Internet Service $9.95
LA LOGIQUE MATHÉMATIQUE
Suite au courant fondationnel, soutenu surtout par Frege et Russell, la logique s’intéresse d’une part à une approche sémantique (dans l’esprit de la théorie des modèles) et d’autre part à une entreprise de formulation d’une théorie de la démonstration, amorcée par le programme de Hilbert. Ce programme cherche à fournir une preuve absolue de la cohérence de l’arithmétique, considérant que les preuves de cohérence des mathématiques n’étaient jusque là que relatives et fondées uniquement sur l’arithmétique, qui elle-même ne pouvait être ramenée à la cohérence d’une autre théorie plus fondamentale. David Hilbert (1862-1943) Hilbert propose son programme lors du Congrès International de Mathématiques de Paris en 1900. La première solution qui est présentée (1904) consiste en une preuve syntaxique, par laquelle on prouve directement qu’il est impossible de déduire un énoncé et sa négation à partir des axiomes d’une théorie. Cette preuve ne s’intéresse pas à la sémantique, mais seulement aux symboles mathématiques et logiques. Dans la mesure où l’on vérifie que c’est bien le cas de tous les énoncés par récurrence (inductivement), la preuve est circulaire et insuffisante. Pour répondre à cette critique, Hilbert fait la distinction entre le principe mathématique de récurrence et la méthode intuitive de raisonnement par récurrence, ce qui ne fut pas suffisant.

43. Full Alphabetical Index
Translate this page 355) Herschel, Caroline (188*) Herschel, John (143*) Herstein, Israel (295*) Hesse,Ludwig (165*) Heuraet, Hendrik van (170) heyting, arend (62*) Hilbert
http://www.geocities.com/Heartland/Plains/4142/matematici.html

44. AL Seminar (1994)
Franchella () Abstract This talk presents the contentof the unpublished notes that the Dutch mathematician arend heyting wrote in
http://www.jaist.ac.jp/is/labs/ono-ishihara-lab/ono-lab/ALseminars/al-seminars94
AL seminar (1994)
(5) February 16, 1994
Title:
$B9`=q49$(%7%9%F%`$N%b%8%e%i@-(B
Speaker:
Yoshihito Toyama (JAIST)
Abstract:
$BFs$D$N9`=q49$(%7%9%F%`$,%A%c! OB%7%9%F(B $B%`$b%A%c! ZL@$5$l$F$$$k!#$3$N%b%8%e(B $B%i@-$O!"9`=q49$(%7%9%F%`$N@~7A@-$d=E$J$j$NM-L5$J$I$N9=B$$K$O$$$C$5$$L54X78(B $B$K>o$K@.N)$9$k$?$a!"J#;($J9=B$$r$b$D9`=q49$(%7%9%F%`$KBP$9$k$-$o$a$F6/NO$J(B $B2r@O R2p$7$?$$!#(B
(6) March 11, 1994
Title:
Normal Proofs and Their Grammar
Speaker:
Masako H. Takahashi (Tokyo Institute of Technology)
Abstract:
(7) March 18, 1994
Title:
Monad as Modality
Speaker:
Satoshi Kobayashi (Ryukoku University)
Abstract:
ZL@$+$i%b%J%I$K4p$E$/(B imperative $B$J4X?t7?%W%m%0%i%`$rF3$/$3$H(B $B$,$G$-$k!#(B
(8)-1 April 1, 1994
Title:
Relational and partial variable sets and basic predicate logic
Speaker:
Silvio Ghilardi ($B%_%i%NBg3X?t3X2J(B)
Abstract:
The content of this talk is a joint work by S. Ghilardi and G. Meloni, extending to intuitionistic-like semantics some previous investigations concerning modal and temporal logic. The proposed semantics is the following: keep possible worlds to be a category, but in correspondence to arrows require a relation between the domains. The method for analyzing this semantics is Lawvere's doctrinal approach. It turns out that a sound and complete axiomatization is obtained simply by dropping the so-called Frobenius and Beck-Chevalley conditions in first order logic.
(8)-2 April 1, 1994

45. Moviecity - Nederlands Grootste Aktuele Filmdatabase.
heyting Scriptfragmenten uit originele werkscripten van Hetty heyting - Fotogalerij- Rekwistietenoverzicht meteen trammelant met Onkel X. En arend Vogel is
http://www.moviecity.nl/?page=dvd&ID=2805

46. [Phil-logic] Re:Intuitionism-Heyting
Vollstandigkeit der Principia ist die Vollstandigkeit meines Systems ME in der bestmoglichen Weise gesichert. , quoted in AS Troelstra, arend heyting and His
http://philo.at/pipermail/phil-logic/2001-September/000031.html
[Phil-logic] Re:Intuitionism-Heyting
Graham Solomon gsolomon@wlu.ca
Wed, 26 Sep 2001 12:48:37 -0400 (EDT) axioms, and deleted those which he thought are nonconstructive. That is hardly possible. Hilbert-Ackermann would seem a more likely source of inspiration. Yes, I likely misremembered the story.

47. Full Alphabetical Index
Translate this page 2275) Herschel, Caroline (1760*) Herschel, John (2821*) Herstein, Yitz (295*) Hesse,Otto (165*) Heuraet, Hendrik van (170) heyting, arend (62*) Higman, Graham
http://alas.matf.bg.ac.yu/~mm97106/math/alphalist.htm
Full Alphabetical Index
The number of words in the biography is given in brackets. A * indicates that there is a portrait.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (2899*)
Abraham
bar Hiyya (641)
Abraham, Max

Abu Kamil
Shuja (1012)
Abu Jafar

Abu'l-Wafa
al-Buzjani (1115)
Ackermann
, Wilhelm (205)
Adams, John Couch

Adams, J Frank

Adelard
of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (12)

48. File 22-1-95.TXT Dateilänge 46 KB * * * * Bearbeiter N.
EGBERT JAN(003) 9 BETH,EVERT WILLEM(003) 9 heyting,arend(003) 9
http://www.phil.uni-passau.de/dlwg/ws03/22-1-95.txt
ERLÄUTERUNGEN ZU DEN LITERATURHINWEISEN: 1. FORMALBIBLIOGRAPHISCHE INFORMATIONEN V - Verfasser TI - Titel (hinter "..." evtl. ein Abstract) Z - Zeitschriften-(Festschrift usw.) Titel BD - Band (mögliche Abkürzungen: "S" f. Sonderheft, "J" f. Jahrbuch JG - Jahrgang SE - Seiten DT - Dokumententyp (mögliche Abkürzung: "JO" f. Zeitschrift, "CO" f. Kongressakte, "HO" f. Festschrft, "RE" f. Reader SPR - Sprache des Artikels (mögliche Abkürzungen: die ersten vier Buchstaben der englischen Bezeichnung der Sprache, also z.B. "GERM" für deutsch). 2. INHALTLICHE INFORMATION Eine inhaltliche Erschliessung der Nachweise wurde erreicht durch 1. eine Anzahl dem Text entnommener Sachwörter oder Namen (als sogenannte "Deskriptoren"), 2. die Kennzeichnung des thematischen Zusammenhangs der Deskriptoren, 3. die Angabe der Wichtigkeit der Deskriptoren im vorliegenden Dokument In (035)/Kant, Immanuel (020)/Lorentz, Hendrik Antoon (035) SPR: GERM (freie Naturgesetz (035)/Erfahrung (035)/Deskript.) Relativitätstheorie

49. IPM - Homepage
direct proofs. In 1930, Brouwer s student arend heyting gave thefirst axiomatization of intuitionistic logic. Kripke semantics
http://www.ipm.ac.ir/IPM/activities/ViewProgramInfo.jsp?PTID=206

50. Neue Seite 1
Translate this page van Heuraet, Hendrik (1633 - 1660). heyting, arend (1898 - 1980). Hilbert,David (23.1.1862 - 14.2.1943). Hill, George William (1838 - 1914).
http://www.mathe-ecke.de/mathematiker.htm
Abbe, Ernst (1840 - 1909) Abel, Niels Henrik (5.8.1802 - 6.4.1829) Abraham bar Hiyya (1070 - 1130) Abraham, Max (1875 - 1922) Abu Kamil, Shuja (um 850 - um 930) Abu'l-Wafa al'Buzjani (940 - 998) Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843) Aepinus, Franz Ulrich Theodosius (13.12.1724 - 10.8.1802) Agnesi, Maria (1718 - 1799) Ahlfors, Lars (1907 - 1996) Ahmed ibn Yusuf (835 - 912) Ahmes (um 1680 - um 1620 v. Chr.) Aida Yasuaki (1747 - 1817) Aiken, Howard Hathaway (1900 - 1973) Airy, George Biddell (27.7.1801 - 2.1.1892) Aithoff, David (1854 - 1934) Aitken, Alexander (1895 - 1967) Ajima, Chokuyen (1732 - 1798) Akhiezer, Naum Il'ich (1901 - 1980) al'Battani, Abu Allah (um 850 - 929) al'Biruni, Abu Arrayhan (973 - 1048) al'Chaijami (? - 1123) al'Haitam, Abu Ali (965 - 1039) al'Kashi, Ghiyath (1390 - 1450) al'Khwarizmi, Abu Abd-Allah ibn Musa (um 790 - um 850) Albanese, Giacomo (1890 - 1948) Albert von Sachsen (1316 - 8.7.1390)

51. Spreads And Choice In Constructive Mathematics
1 BISHOP, ERRETT AND DOUGLAS BRIDGES, Constructive analysis, SpringerVerlag1980. 2 heyting, arend, Intuitionism, an introduction, North-Holland 1956.
http://www.math.fau.edu/Richman/docs/spreads.htm
Spreads and choice in constructive mathematics
Fred Richman
Florida Atlantic University
Boca Raton, FL 33431
21 June 2001
Abstract
An approach to choice-free mathematics using spreads: If constructing a point satisfying property P requires choice, replace this problem by that of constructing a nonempty set of elements satisfying P . Then construct a spread, without choice, whose elements satisfy P . The theory is developed and several examples are given.
Constructing points without choice
There are many situations in (constructive) mathematics where you want to construct a point, say a real or complex number, with certain characteristics. The three problems I want to consider are
  • constructing a complex number that satisfies a given nonconstant polynomial over the complex numbers-the fundamental theorem of algebra
  • constructing a point in a given set of positive measure, and
  • constructing a point in the intersection of a given countable family of open dense subsets of a complete metric space-the Baire category theorem.
For each of these problems, the traditional solutions appeal to countable choice, or rather to the stronger

52. The Ascending Tree Condition
condition, Bull. Amer. Math. Soc. 49 (1943), 225236. 3 heyting, arend,Intuitionism, an introduction, North-Holland 1956. 4 JACOBSSON
http://www.math.fau.edu/Richman/docs/new-acc.htm
The ascending tree condition
Fred Richman
Florida Atlantic University
23 December 2001
Abstract. A strengthening of the ascending chain condition allows a choice-free constructive development of the theory of Noetherian modules. Related topics in the theory of PID's and elementary divisor rings are also explored. The theory of finitely generated modules over a Noetherian ring admits a satisfactory constructive development by considering finitely presented modules over a coherent Noetherian ring [5]. From a classical point of view, every finitely generated module over a Noetherian ring is finitely presented-in particular, every Noetherian ring is coherent-so this also provides an adequate classical theory. From a constructive point of view, being finitely presented, rather than finitely generated, is a stronger property that must be assumed even if the ring is a field. The definition of Noetherian used in [5] was the ascending chain condition on finitely generated ideals, in the form If I I I is a chain of finitely generated ideals, then there exists

53. Luitzen Egbertus Jan Brouwer
Brouwer s principal students were Maurits Belinfante and arend heyting; thelatter, in turn, was the teacher of Anne Troelstra and Dirk van Dalen.
http://plato.stanford.edu/entries/brouwer/
version history
HOW TO CITE

THIS ENTRY
Stanford Encyclopedia of Philosophy
A B C D ... Z
This document uses XHTML-1/Unicode to format the display. Older browsers and/or operating systems may not display the formatting correctly. last substantive content change
MAR
Luitzen Egbertus Jan Brouwer
In classical mathematics, he founded modern topology by establishing, for example, the topological invariance of dimension and the fixpoint theorem. He also gave the first correct definition of dimension. In philosophy, his brainchild is intuitionism, a revisionist foundation of mathematics. Intuitionism views mathematics as a free activity of the mind, independent of any language or Platonic realm of objects, and therefore bases mathematics on a philosophy of mind. The implications are twofold. First, it leads to a form of constructive mathematics, in which large parts of classical mathematics are rejected. Second, the reliance on a philosophy of mind introduces features that are absent from classical mathematics as well as from other forms of constructive mathematics: unlike those, intuitionistic mathematics is not a proper part of classical mathematics.
The Person
Brouwer studied at the (municipal) University of Amsterdam where his most important teachers were Diederik Korteweg (of the Korteweg-de Vries equation) and, especially philosophically, Gerrit Mannoury. Brouwer's principal students were Maurits Belinfante and Arend Heyting; the latter, in turn, was the teacher of Anne Troelstra and Dirk van Dalen. Brouwer's classes were also attended by Max Euwe, the later world chess champion, who published a game-theoretical paper on chess from the intuitionistic point of view (Euwe, 1929), and who would much later deliver Brouwer's funeral speech. Among Brouwer's assistants were Heyting, Hans Freudenthal, Karl Menger, and Witold Hurewicz, the latter two of whom were not intuitionistically inclined. The most influential supporter of Brouwer's intuitionism outside the Netherlands at the time was, for a number of years, Hermann Weyl.

54. Er Uendelighed Aktuel Eller Potentiel?
På den anden side er der intuitionisterne, som i denne opgave repræsenteresaf LEJ.Brouwer (18811966) og arend heyting (1898-1980).
http://www.filosofi.net/Afhandlinger/Html/uendelighed.htm
Uendelighed, aktuel eller potentiel? er et BA-projekt ved: Center for Filosofi, Filosofisk Institut Odense Universitet, Syddansk Universitet Af Lisbeth Jørgensen lisbeth_jorgensen@yahoo.com Vejleder: Cynthia M. Grund Forside: Georg Cantor og L.E.J.Brouwer set med uendelighedens brilleglas Afleveret d. 8/1 2001 Indholdsfortegnelse Problemformulering Indledning Uendelighedens paradokser Baggrundshistorien for distinktionen mellem aktuel og potentiel uendelighed ... Litteraturliste
Problemformulering
Er uendelighed aktuel eller potentiel? Hvad er argumenterne for at uendelighed er aktuel henholdsvis potentiel? Hvilke nye problemer udløser disse argumenter?
Indledning
Hvad er uendelighed? Findes uendelighed, er der noget uendeligt i verden? Eller er uendelighed bare noget vi bruger som begreb, en slags grænse som egentlig ikke er der. I det overordnede spørgsmål om hvad uendelighed er, ligger også en undersøgelse af tid og rum, men jeg vil i denne opgave begrænse mig til den matematiske uendelighed. Således hører denne opgave ind under matematikkens filosofi. Min filosofiske indgangsvinkel til dette emne er at tage udgangspunkt i de paradokser der opstår ved nærmere betragtning af uendelighed. Man kan så spørge hvilken opfattelse af uendelighed der har betydning for at de forskellige paradokser opstår. Kan de forskellige forklaringer af matematisk uendelighed give en løsning på paradokserne, uden at nye opstår? Uendelighed optræder i matematikken bl.a. i mængdelære og i geometri. Mængden af naturlige tal er uendelig stor; uanset hvor langt man tæller, er det altid muligt at tælle én til. Der er således ikke noget største naturligt tal – enhver kandidat til et sådant kan med det samme blive større ved at lægge én til. I geometriens studie af rummet kan en linje deles uendeligt mange gange, og ethvert interval kan blive underinddelt i flere underinddelinger. Den tanke at en proces kan fortsættes i det uendelige, introducerer uendelighed som potentiel; uendelighed er aldrig noget der kan nås. I vores standard aritmetik (tallære) opfattes uendelighed på den anden side også som aktuel: Mængden af naturlige tal opfattes som

55. Learning-Org Jul 2000: Systematical Patterns In Boolean Logic L
However, eventually one of his students (arend heyting) managed to createa model for this intuitionistic, constructivist logic of Brouwer.
http://www.learning-org.com/00.07/0052.html
Systematical Patterns in Boolean Logic LO25063 [complex]
From: AM de Lange ( amdelange@gold.up.ac.za
Date: Replying to LO25047
Dear Organleaners,
Greetings to you all.
In my reply to the topic Efficiency and Emergence LO25047, I did
somethings so as to initiate this contribution. I wrote:
>philospher CS Peirce as "inclusive denials". .... It is often
>called among logicians as Peirce's "dagger" and can be
(snip)
>This "dagger" seems to be a self-destruction of truth in statements.
This "handle" gives me the opportunity to say something more on the relationship between logic and Learning Organisations. I specifically avoid calling this contribution "Systems Thinking and

56. Learning-Org May 1999: "Junk" Science LO21531
In the mean while one of Brouwer s students arend heyting created a logical systemto generate the intuitionistic theorems which Brouwer so painstakedly had
http://www.learning-org.com/99.05/0074.html
"Junk" Science LO21531
AM de Lange ( amdelange@gold.up.ac.za
Fri, 7 May 1999 10:16:31 +0200
Replying to LO21521
Dear Organlearners,
jgunkler@sprintmail.com

Greetings John,
Thank you very much for explaining in more detail what you meant. When
you warned against fallicious thinking, I had the uneasy feeling that
you were using the shot gun with the sawn off barrel, spraying hail
all over the place, hoping to hit someone's thoughts. Now I know that
you had something much more clear in mind. Just two points on the name of the topic. If we are going to stay on

57. What Do Types Mean?
In arend heyting, editor, Constructivity in Mathematics, pages 101128. Inarend heyting, editor, Constructivity in Mathematics, pages 81-100.
http://portal.acm.org/citation.cfm?id=766967&dl=ACM&coll=portal&CFID=11111111&CF

58. Finitism
Now jump to arend heyting and Abraham Robinson in the 20th century. The latter wasthe genius at Yale responsible for most of modern aerodynamic wing theory.
http://www.ccir.ed.ac.uk/~jad/vantil-list/archive-Sep-2000/msg00030.html
Date Prev Date Next Thread Prev Thread Next ... Thread Index
Finitism

59. Diccionario De Autores
Translate this page (1889-1971). HEYDE, JOHANNES ERICH (nac. 1892). HEYMANS, GERARDUS (1857-1930).heyting, arend (nac. 1898). HIEROCLES DE ALEJANDRÍA fl. 420. HIEROCLES EL ESTOICO
http://cibernous.com/colabora/comunes/diccionario.htm
DICCIONARIO DE AUTORES
A B C D ... Z
A
AALL, ANATHON ABBAGNANO, NICOLA
(nac. 1901)
ABBT, THOMA ABELARDO (PEDRO) ABENALARIF ABENALSID ABENARABI ABENHAZAM ABENMASARRA ABENTOFAIL ABU SALT ACHILLUNI, ALESSANDRO ACKERMANN, WILHELM ACONCIO, GIACOMO [ACONZIO, CONCIO; ACONTIUS, JACOBUS]
entre 1492-1520-ca. 1568
ADAMSON, ROBERT
(fallecido 1181)
ADELARDO DE BATH
(fl. 1100)
ADICKES, ERICH ADLER, ALFRED ADLER, MAX ADORNO, THEODOR W[IESENGRUND] AECIO
fl. ca. 150
AGRIPPA DE NETTESHEIM, HEINRICH CORNELIUS [HENRICUS CORNELIUS] AHRENS, HEINRICH AJDUKIEWICZ, KAZIMIERZ ALANO DE LILLE
(ca. 1128-1202)
ALBERINI, CORIANO ALBERT, HANS
(nac. 1921)
ALBERTO (SAN) ALBINO
fl. 180
ALBO, JOSEF [YOSEF]
ca. 1380-ca. 1444
ALEJANDRO DE AFRODISIA ALEJANDRO DE HALES
(ca. 1185-1245) fl. ca. 300
ALEMBERT, JEAN LE ROND D' ALEXANDER, SAMUEL ALFARABI ALGAZELLI (ALGAZEL) ALIOTTA, ANTONIO ALKINDI ALONSO DE LA VERACRUZ
(nac. 1906)
ALTHUSSER, LOUIS
(nac. 1918) (fallecido 1206/7)
AMBROSIO (SAN)
ca. 340-397
AMELIO
fl. 240
AMMNOIO HERMEIOU [AMMNONIO DE HERMIA]
fl. 530

60. Geert Willems Kaptein
0211-1950 te Arnhem. arend overleed op 12-01-1944 te Arnhem. Kinderen 09-09-1895te Apeldoorn, (zoon van Gerrit van LOHUYZEN en Johanna Geertruida heyting).
http://home.wanadoo.nl/kappetein/derden/4724.htm
De nakomelingen van Geert Willems Kaptein, Hoogeveen vanaf 1800 Opgesteld door Claudia van ´t Veer Geert Willems KAPTEIN Hij trouwde Albertje Roelofs DODEVIS Geert overleed op 27-12-1829 te Hoogeveen. Kinderen: i Roelof KAPTEIN ii Arend Geerts KAPTEIN iii Willem Geerts KAPTIJN Tweede Generatie Roelof KAPTEIN Hij trouwde Alberdina ENTING , (dochter van Berend ENTING en Geesje SIKKENS ) overl. 21-11-1856 te Hoogeveen. Roelof overleed op 29-08-1865 te Hoogeveen. Kinderen: i Geert KAPTEIN , geb. 2 aug 1827 te Hoogeveen, overl. 23-07-1849 te Zwartsluis. ii Berend KAPTEIN , geb. 2 feb 1829 te Zwolle, overl. 27-08-1830 te Hoogeveen. iii Berend KAPTEIN , geb. 29-06-1831 te Hoogeveen, overl. 13-03-1837 te Hoogeveen. iv Albert KAPTEIN geb. 3 nov 1834. v Berend KAPTEIN geb. 21-04-1839. Arend Geerts KAPTEIN Hij trouwde (1) Jacoba Roelofs BOUWMEESTER , getrouwd 04-06-1826 te Hoogeveen, (dochter van Roelof Jans BOUWMEESTER en Albertje Alberts KLINKIEN ). Hij trouwde (2) Catharina MAATJES , getrouwd 17-11-1855 te Hoogeveen, geb. 9 aug 1826 te Hoogeveen, (dochter van Derk Geerts MAATJES en Klaasje Alberts METSELAAR ). Arend overleed op 20-03-1887 te Hoogeveen.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 3     41-60 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter