Geometry.Net - the online learning center
Home  - Scientists - Heawood Percy
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Heawood Percy:     more detail
  1. Hochschullehrer (Durham): John Frederick Dewey, David Heywood Anderson, Fritz London, David M. Knight, Percy Heawood, William Young Sellar (German Edition)
  2. Vice-Chancellors and Wardens of Durham University: Kenneth Calman, Derman Christopherson, Percy John Heawood, Chris Higgins

61. Spektrum Der Wissenschaft
Translate this page Eine mit dem Erde-Mond-Problem verwandte Frage hat 1890 der britischeMathematiker percy John heawood (1861 bis 1955) gestellt.
http://www.wissenschaft-online.de/spektrum/index.php?action=rubrik_detail&artike

62. Spektrum Der Wissenschaft
Translate this page Nach einem Satz des englischen Mathematikers percy John heawood (1861 bis1955) läßt sich jeder Graph der Dicke 2 mit 12 Farben färben.
http://www.wissenschaft-online.de/spektrum/index.php?action=rubrik_detail&artike

63. On Dharwadker's Proof
1879. In 1890, percy John heawood showed that Kempe’s proof waswrong. Thus the fourcolor conjecture remained unproven. In
http://www.angelfire.com/mi4/proof/
var cm_role = "live" var cm_host = "angelfire.lycos.com" var cm_taxid = "/memberembedded"
History of the Four-Color Conjecture 1840-2004
by Clarence Williams why exactly four colors suffice to color any conceivable map drawn on the plane. In 2000, Ashay Dharwadker [6] announced a new proof of the four-color theorem that appears to have stood the test of time. Some notes on Dharwadker's proof: In section I on Map Coloring, he defines maps on the sphere and their proper coloring. For purposes of proper coloring it is equivalent to consider maps on the plane and furthermore, only maps which have exactly three edges meeting at each vertex. Lemma 1 proves the six colour theorem using Euler’s formula, showing that any map on the plane may be properly colored by using at most six colours. Dharwadker then makes the following definitions.
  • Define N to be the minimal number of colors required to properly color any map from the class of all maps on the plane. Based on the definition of N, select a specific map m(N) on the plane which requires no fewer than N colors to be properly colored. Based on the definition of the map m(N), select a proper coloring of the regions of the map m(N) using the N colors 0,1,...,N-1.
  • 64. Omega Art - Webquest Landen Kleuren: Proces
    Zorg dat in je beschrijving in ieder geval de namen van Francis Guthrie, AlfredBray Kempe, percy John heawood, Kenneth Appel en Wolfgang Haken voorkomen.
    http://www.omega-art.com/math/webquest/1p_klein/vierkleuren/proces.html
    Intro Taak Proces Evaluatie Conclusie Bronnen
    Landen kleuren
    Proces
    Logboek
    Een onderdeel van het in te leveren werkstuk is een logboek . Daarin noteer je wanneer je wat gedaan hebt. Zo'n logboek kan heel beknopt zijn: geen eindeloze verhalen, maar korte notities zoals "15/11: 13.00-14.00 webartikelen over <onderwerp> gelezen; 14.00-15.00: eerste opzet van het hoofdstuk gemaakt". Je moet vooral met de opdracht zelf bezig zijn, en niet met allerlei administratieve rompslomp. Je complete logboek past op 1 A4'tje. Maar dat A4'tje moet er dan wél zijn aan het eind! Een logboek bijhouden kost geen tijd, als je het tenminste consequent bijhoudt , en niet 2 dagen later nog moet bedenken wat je eergisteren ook al weer gedaan had.
    Deel 1 - Een eerste verkenning
    Tip vooraf: je zult op Engelstalige webpagina's terecht komen, waar wellicht wiskundige vaktaal gebruikt wordt. Als je moeilijke woorden tegenkomt, kijk dan eens naar mijn woordenlijstje , of kijk anders op de Bronnen pagina waar links staan naar woordenboeken voor Engelstalige wiskundetermen. Onderzoek of je de kaart van de Verenigde Staten met minder dan 4 kleuren kunt kleuren. Als dat kan, geef dan zo'n kleuring. Als het niet kan, probeer dan uit te leggen waarom niet - en geef indien relevant een illustratie van het "probleemgebied". Wees duidelijk in je uitleg!

    65. Math G Mission College Santa Clara
    In 1890 The Four Color Theorem, once again, became the Four Color Conjecturewhen percy John heawood revealed errors in Kempeís proof.
    http://www.missioncollege.org/depts/math/beard2.htm
    Math Department, Mission College, Santa Clara, California Go to Math Dept Main Page Mission College Main Page This paper was written as an assignment for Ian Walton's Math G - Math for liberal Arts Students - at Mission College. If you use material from this paper, please acknowledge it. To explore other such papers go to the Math G Projects Page.
    The Four Color Theorem Michelle Beard
    Math G, Spring 1999 Mission College, Santa Clara
    How many colors are required to color any map so that no countries with common borders are the same color? It is generally held that four colors, for any flat map, will suffice. But a belief that is commonly held and easily observed, is not a mathematical certainty. Nor does the simplicity of a question reflect the ease with which the answer can be proven.
    The mathematical evidence to create a valid proof that four colors are all that is required had evaded mathematicians for nearly 140 years. What became known as the Four Color Conjecture has been the cause of great fascination and frustration. It has also been the stimulus for new ideas in topology, knot theory, and the concept of mathematical proof.
    Historical Overview:
    The question was originally posed by Francis Guthrie, a former student of the famous mathematician Augustus De Morgan, in 1852. Although Francis moved on to study law, his brother Frederick Guthrie had become a student of De Morgan. Francis Guthrie presented his work on the idea to his brother asking that he pass it along to De Morgan.

    66. VEDA
    25.9. MATEMATIKOVÉ V HISTORII percy John heawood Jirí Svršek Kromematematiky má heawood ješte jednu významnou zásluhu.
    http://pes.eunet.cz/veda/48_0_0/1003442400.html
    NEVIDITELNÝ PES EUROPE'S ZVÍØETNÍK BYDLENÍ ... ENCYKLOPEDIE
    Pátek 19.10.2001
    Svátek má Michaela
    Biologie a pøíroda

    Vesmír

    Fyzika

    Medicína
    ...

    Archiv vydání
    Nadpis Autor Text èlánku
    PROHLÁŠENÍ: Pražská botanická zahrada protestuje proti neobjektivnímu pøístupu v kauze skleník
    zamìstnanci Pbz Praha, 7.10.2001: Zamìstnanci botanické zahrady v Praze-Tróji dùraznì protestují proti neobjektivnímu pøístupu nìkterých zastupitelù Magistrátu hlavního mìsta Prahy a jejich snaze o urychlené odvolání øeditele botanické zahrady Mgr. Jiøího Haagera. Zamìstnanci Pražské botanické zahrady , jako organizace spravované Magistrátem HMP se cítí tímto jednáním napadeni a vyzývají všechny zastupitele , aby zvážili veškeré skuteèn osti související se stavbou skleníku a vyhnuli se ukvapeným rozhodnutím na základì neúplných èi zámìrnì zkreslených informací . Považují za nutné upozornit na zaujatost nìkolika zastupitelù Magistrátu HMP a na skuteènost, že dosud známé posudky, jimiž je a rgumentováno proti PBZ , byly vypracovány autory, kteøí jsou v kauze skleník pøímo èi nepøímo zainteresováni. Aèkoliv odbor auditu a kontroly Magistrátu hl. mìsta Prahy

    67. BBC - Radio 4 - Another 5 Numbers - The Number Four
    the matter closed. Then in 1890, percy heawood, a lecturer at Durham,discovered a flaw in Kempe s theory. When revised, it suggested
    http://www.bbc.co.uk/radio4/science/another51.shtml
    @import url('/includes/tbenh.css') ; Home
    TV

    Radio

    Talk
    ...
    A-Z Index

    1 June 2004
    Text only

    BBC Homepage

    BBC Radio

    Radio 4
    PROGRAMME FINDER: A-Z Directory Listen Again What's On Listings Presenters PROGRAMME GENRES: Arts and Drama Science History Factual TOP PROGRAMMES
    THIS WEEK: Reith Lectures The Archers Today Programme Woman's Hour ... Help Like this page? Send it to a friend! ANOTHER 5 NUMBERS: The Number Four MISSED A PROGRAMME? Go to the Listen Again page Simon Singh investigates another five very important numbers. Monday 27 October 2003 3.45-4.00pm Simon Singh's journey begins with the number 4, which for over a century has fuelled one of the most elusive problems in mathematics: is it true that any map can be coloured with just 4 colours so that no two neighbouring countries have the same colour? This question has tested some of the most imaginative minds - including Lewis Carroll's - and the eventual solution has aided the design of some of the world's most complex air and road networks. Listen again to Programme 1: The Number Four Most people's memories of geography at school will include two things. Firstly, there was learning by rote the groundnut crop yield figures for Senegal in the mid '70s, and secondly, there was colouring-in maps. Many hours were spent shading-in maps of Birmingham, scrounging around for different colour pens to distinguish Smethick from Oldbury. Now, a puzzle which owes more to maths than geography posits the question, how many different colour pens did you really need to pilfer from your mate's pencil-case in order to do Brum, so that no two adjacent suburbs had the same colour. Memories of youthful exuberance would suggest every pen in your pal's possession, but mathematically, the answer is 4.

    68. The History Of The Four-colour Theorum | Science Alliance Newsletter 17 | School
    its development. Unfortunately, percy heawood (18611955) createda counter-example, and the conjecture was an open issue again.
    http://www.scifac.usyd.edu.au/school/newsletter17/fourcolour.html

    school students
    newsletter 17 ARTICLES
    SCIENCE ALLIANCE: NEWSLETTER 17
    The history of the four-colour theorum
    The four-colour theorem states that only four colours are needed to colour any map so that no countries that share a border are the same colour. It was one of the most fascinating unsolved problems in mathematics, finally proved in 1976 by Kenneth Appel and Wolfgang Haken from the University of Illinois. The Appel-Haken solution is controversial in some quarters because it is the first time an important mathematical theorem was proven with the aid of computers in such a way as the details could not be checked by human beings. The Unit for History and Philosophy of Science offers students (including teachers) opportunities to learn about the history of mathematical, physical, biological, and medical sciences.
    Print this page

    Printer version
    back issues
    home about scifac current students ... search FACULTY OF SCIENCE, UNIVERSITY OF SYDNEY

    69. Jugend Forscht Am Viscardi
    Translate this page 1879 Der Vierfarbensatz gilt als bewiesen.(Sir Alfred Bray Kempe , Widerspruchsbeweis).1890 percy John heawood widerlegt Kempes Beweis.
    http://www.viscardi-gymnasium.de/jugendforscht/vierfarbensatz.htm
    Jugend forscht am Viscardi Regional- und Landeswettbewerb 2003 "Der Vierfarbensatz" Philipp Shah (18) Fachgebiet Mathematik Der Student Francis Guthrie stellt beim Kolorieren der Landkarte einer englischen Grafschaft die „Vierfarbenvermutung“ auf . Der Mathematikprofessor Augustus de Morgan wird eingeschaltet und beweist:
    - Drei Farben reichen für beliebige Karten nicht aus.
    - Es gibt keine Möglichkeit 5 Länder so anzuordnen, dass jedes Land mit jedem anderen eine gemeinsame Grenze hat. Der Vierfarbensatz gilt als bewiesen.(Sir Alfred Bray Kempe , Widerspruchsbeweis). Percy John Heawood widerlegt Kempes Beweis. Wolfgang Haken und Kenneth Appel liefern einen Beweis auf einem IBM 370-168 (Rechenzeit: 1000 Stunden, also mehr als 41 Tage). Der Student Ulrich Schmidt aus Aachen entdeckt 15 Fehler im Programm. Appel und Haken haben eine „error-correction-routine“ entwickelt, und alle bis dahin bekannt gewordenen Fehler berichtigt. Robertson, Sanders, Seymour und Thomas liefern einen neuen kürzeren und durchschaubareren Beweis - aber wieder am PC!

    70. Newsletter Item
    of the meeting by describing the origins of the problem and presenting the fallacious(but useful) proof by Alfred Kempe and its refutation by percy heawood.
    http://www.lms.ac.uk/newsletter/0212/articles.html
    LMS/BSHM JOINT MEETING ON THE FOUR-COLOUR PROBLEM A meeting commemorating the 150th anniversary of the four-colour problem and the 25th anniversary of its published solution took place on 23 October 2002 at University College London, in the attractive Cruciform Lecture Theatre. This event, organised jointly by the London Mathematical Society and the British Society for the History of Mathematics, was the centrepiece of a whole week of commemorative events at six venues with four guest speakers from the US. The afternoon meeting was attended by about 100 people. It opened with a short welcoming speech by Dr June Barrow-Green, Vice-President of the BSHM, who remarked on the appropriateness of time and place of the meeting – 150 years to the day of the posing of the problem by a student at University College – and thanked the LMS for its support and encouragement to the BSHM over many years. After tea in the North Cloisters, we returned for a short formal LMS meeting chaired by Trevor Stuart, at which several new members signed the LMS membership book. This was followed by two talks on more recent work. Dan Archdeacon (Vermont) gave a lively presentation of the work of Gerhard Ringel, Ted Youngs and others on problems that involve the colouring of maps on general surfaces (both orientable and non-orientable), using the underlying ideas of current and voltage graphs. Finally, Robin Thomas (Atlanta) gave an exciting lecture in which he outlined the more recent solution by Robertson, Sanders, Seymour and himself; although based on the approach of Appel and Haken, it was simpler to understand, and involved only half as many configurations as those given by Appel and Haken. He also outlined some unexpected connections between the four-colour problem and problems from vector algebra, number theory and Lie groups, and concluded by stressing that the four-colour problem is by no means the end of the road – there are several unsolved problems that generalize the four-colour problem, to whose solutions Thomas and his co-workers have recently been making exciting progress.

    71. 4 Farben Problem
    Translate this page Dieser Beweis wurde über zehn Jahre lang als richtig und das Problem als gelöstangesehen, bis 1890 percy John heawood (1861 - 1955) eine Lücke im
    http://intern.csg-germering.de/faecher/mathe/mathematisch/vierfarben.htm
    Sir William Rowan Hamilton (1805-1865) schrieb. Dann gab de Morgan Das "Vierfarbenproblem', wie es bald genannt wurde, blieb aber ungelöst, bis am 17. Juli 1879 eine Notiz in der Zeitschrift "Nature" erschien, daß der Londoner Jurist Sir Alfred Bray Kempe (1849 - 1922) das Vierfarbenproblem gelöst habe. Der Beweis erschien kurz darauf im "American Journal of Mathematics". Dieser Beweis wurde über zehn Jahre lang als richtig und das Problem als gelöst angesehen, bis 1890 Percy John Heawood (1861 - 1955) eine Lücke im Kempeschen Beweis fand. Das war ihm fast peinlich, und in der Einleitung entschuldigte er sich für seine "destruktive" Arbeit. massivem Computereinsatz In der Aprilscherzkolumne der Zeitschrift Scientific American von 1975 berichtete Martin Gardner von den sechs "bedeutendsten" Entdeckungen des Jahres 1974 und stellt dort die von einem gewissen William McGregor entdeckte Landkarte vor, die nicht mit vier Farben zu färben sei.

    72. Chris
    with the problem. Except for one man, percy John heawood. He studiedKempe’s “solution” and encountered a fallacy. This would
    http://www.facstaff.bucknell.edu/udaepp/090/w3/chrisc.htm
    The Mathematics of Map Coloring
    by Chris Cutillo The four-color conjecture has been one of several unsolved mathematical problems. From 1852 to this day, practically every mathematician has studied the problem long and hard, but to no avail. The conjecture looks as though it has been solved by Wolfgang Haken and Kenneth Appel, both of the University of Illinois. They have used computer technology to prove the conjecture. The calculation itself goes on for about 1200 hours. The staggering length of the computation of the proof is what creates some controversy in the mathematical world. You can see why this issue has been wreaking havoc for many years. It all started back in 1852 when Francis Guthrie was coloring a map of England. He wanted to know the least amount of colors, or chromatic number, it would take to color the map so no two adjacent regions are of the same color. He found the chromatic number to be four. He then studied arbitrary maps and wondered if all maps could be colored with four colors. He then passed this question on to his brother, Frederick.

    73. DURHAM COUNTY LOCAL HISTORY SOCIETY
    Hero). percy John heawood (18611955) (Professor of Mathematics), MrsMay Hedley (1853-1925) (Founder of a Nursing Service Home). Charles
    http://www.durhamweb.org.uk/dclhs/BIOGRAPHY_VOL2.HTML
    DURHAM COUNTY LOCAL HISTORY SOCIETY
    Site Map
    Who we are
    Our programme Publications ... Links
    OCCASIONAL PAPER
    Durham Biographies - volume 2
    edited by G.R.Batho
    Introduction to the second volume of Durham Biographies.
    Council of the Society has decided to publish a series of volumes, of which this is the second, of potted biographies of men and women who made a significant, but not necessarily a high profile, contribution to the life of the region as defined by the boundaries of pre-1974 County Durham and industrial Tyneside and Teesside in the nineteenth and twentieth centuries, or who were residents and achieved fame outside the region.
    The Society is grateful to the contributors and invites anyone who wishes to contribute to later volumes to contact G. R. Batho, Honorary Editor.
    Contents
    The Allan Family of Blackwell (Merchants and Landowners) Charles Attwood (1791-1875) (Founder of Weardale Iron Company) The Rt. Hon. Lord Beveridge KCB, FBA (1879-1963) (Civil Servant, Economist and Social Reformer) William Bewick (1795-1866) (Portrait Painter) George Binns (1815-1847) (Chartist Leader) John Bowes (1811-1885) (Coal-owner and founder of museum) James Boyden (1910-1993) (Educationalist and Politician) The Bradford Brothers (Heroic Family of the First World War) George Bull (1904-2001) (Lawyer and Town Clerk) Sir William Chaytor (1771-1847) MP landowner and businessman) Sir Derman Christopherson, OBR, FRS (1915-2000) (Vice-Chancellor of Durham)

    74. Živì.cz – O Poèítaèích A Internetu
    Mathematics sve reseni. V roce 1890 zverejnil percy John heawood analyzudokazujici, ze Kempe se mylil. Ovsem jeho analyza dokazovala
    http://www.zive.cz/h/Specialy/F.asp?ReplyToID=245485&ArtID=113741&HID=26

    75. Geo.batmath.it Di Maddalena Falanga E Luciano Battaia
    Translate this page di insuccessi e di false dimostrazioni (una delle più famose è quella di AlfredBray Kempe, pubblicata nel 1879 e demolita da percy John heawood una decina d
    http://www.batmath.it/geo/cap1/dimostrare.htm
    geo home Capitolo 1
    Che cosa significa dimostrare?
    Dimostrare nella matematica pre-classica Il "teorema enorme" Il teorema dei "quattro colori" Secondo la definizione che abbiamo dato , dimostrare significa dedurre, mediante ragionamento logico basato su assiomi o teoremi precedenti, la tesi dall'ipotesi. L'idea che sta alla base di questo concetto è che un qualsiasi studioso deve poter essere in grado di seguire e rifare tutti i ragionamenti utilizzati, se conosce i "precedenti" (cioè quello che è già stato assunto o dimostrato). Ovvero: la dimostrazione è un ragionamento mediante il quale un matematico può convincere un altro matematico, che la legga, della verità di una affermazione. Questa idea di dimostrazione è essenzialmente contenuta negli Elementi Dimostrare nella matematica pre- classica All'inizio della storia della matematica è chiaro che dimostrare aveva un significato completamente diverso. Consideriamo per esempio il problema della somma degli angoli interni di un triangolo. E' abbastanza facile provare sperimentalmente che detta somma, in un triangolo equilatero, è un angolo piatto. Infatti utilizzando mattonelle con questa forma (e forse è proprio così che la "dimostrazione" fu fatta) è facile ricoprire un pavimento e in particolare si possono costruire figure come quella qui a lato. Siccome occorrono sei mattonelle triangolari per coprire tutto l'angolo giro, ciascuno degli angoli al centro deve essere un sesto dell'angolo giro: se ne deduce che la somma dei tre angoli del triangolo deve essere tre sesti di angolo giro, cioè un angolo piatto.

    76. Victorian Photographers List - Birmingham, Warks & Others
    percy WYNNE,, 174 Broad Street,, Birmingham was EB MOWIL prior to c 1927. heawood,,Welford Place,, Leicester, and at King Richard Rd, Leicester.
    http://www.hunimex.com/warwick/photogs.html
    Victorian Photography Studios
    A table of photographers studios in and around Birmingham and Warwickshire
    Submitted by people from the Warwick and London list.
    Name Address Location Studios in Birmingham: Nelson Passage (opposite Market Hall) Bull Ring, Birmingham. Edmund S. BAKER Art Studios, 82 Bristol St., Birmingham 154 Bristol St., Birmingham, from about 1896-9 Egeston BAKER, Northlight Studios, 220 Deritend Bridge, Birmingham W. BAKER, Highgate Studios 110 Moseley Road
    renumbered (c.1894) to 213 Moseley Road, Birmingham - 1880-90s BAKER and HUDSON, 118 (moved 1896-9 to 243-4) Gooch St
    62 Bordesley, Birmingham W.B. BARBER, 37 Broad St. Birmingham Worcester. BIRCHLEY, 220 High Street, Birmingham - c. 1890 BIRMINGHAM Photograph Studio, 5 Union Passage, Birmingham J. BURTON, Artist, Aston, Birmingham Winifred COOPER, The Studio, 72 Wolverhampton Rd, Birmingham 32. c. 1940's 269 Castle St., Dudley A E DAWSON, 73 Station Road, Kings Heath, Birmingham Ernest DYCHE, 32, Coventry Road, Birmingham Frank EVANS, 14 Trafalgar Road

    77. Norman & June Hunt
    MJ, HARVEY, Myrtle Irene, HARVEY, Olive Marion, HARVEY, percy Ronald, HARVEY Neil,HAZALDENE, Raymond, HAZELDINE, Isaac, HAZLETT, Jack, heawood, Doris, Unknown
    http://www.hunts135.freeserve.co.uk/familytree/treeh.htm
    Name, Birth date, Birth location
    HAGGART, Cecilia Maude,
    HAGGART, John,
    HAGGART, Majorie Grace,
    HAGGET, Jennifer Annett
    HAGGETT, Charle27 March 1938
    HARCOURT, Barbara,
    HARCOURT, Blake, 1865, Hokitika, New Zealand
    HARCOURT, Christine Mary, 13 December 1963
    HARCOURT, Donald,
    HARCOURT, Doris May 21 December 1903 Humphreys, Hokitika, New Zealand HARCOURT, Dougal, , s, HAGUE-SMITH, Eileen Mary, HALL, HALL, Catherine, , Ockbrook, Derby HALL, Elsie, HALL, Eric, HALL, Florence, HALL, John, HALL, Sarah, Unknown HALL, Sidney, HALL, Sydney, , Dentist, Levin HALLETT, Thomas, HALLWOOD, Elizabeth, Unknown HALLWOOD, William, Unknown HAM, Isabella Jane, Abt. 1852 HANCOX, Harry, HANCOX, Russell, HANCOX, Warren, HANDY, Lizzie, HANNAH, Elizabeth, 1849, Manchester HANNAM, Fred, HARCOURT, Alice, HARCOURT, Alicia, HARCOURT, Allan, HARCOURT, Allan Grant, 3 September 1852, Whitby, England HARCOURT, Amelia Lucy, 11 July 1895, Croyden, Australia HARCOURT, Anthony Thomas HARCOURT, George, , Grantown, Strathspey, Scotland

    78. Biblio - Title
    heawood 1969 Watermarks, Mainly of the 17th and 18th Centuries (Hilversum, 1950R1957 percy 1930 percy, HenryAdvice to His Son ed. GB Harrison (London, 1930
    http://www.cs.dartmouth.edu/~wbc/julia/biblio/biblio.htm
    BIBLIOGRAPHY
    ABBREVIATIONS
    AcM Acta musicologica AnMc Analecta Musicologica AnnM Annales musicologiques CMc Current Musicology EMc Early Music FAM Fontes artis musicae JAMS Journal of the American Musicological Society JLSA Journal of the Lute Society of America JRMA Journal of the Royal Musical Association LSJ Lute Society Journal The Lute MA The Musical Antiquary MD Musica Disciplina Music and Letters MMEME Music in Medieval and Early Modern Europe MQ The Musical Quarterly MR The Music Review MT The Musical Times PRMA Proceedings of the Royal Musical Association RISM SIMG TL The Library Abbot 1975 Abbot, Djilda and Segerman, Eric: 'The Cittern in England before 1700' LSJ xvii (1975), 24 Adriansen 1584 Adriansen, Emanuel: Pratum musicum (Antwerp, 1584) Adriansen 1592 Novum pratum musicum (Antwerp, 1592) Adriansen 1600 Pratum musicum (Antwerp, 1600) Alexander 1978 Alexander, Jonathan J G: The Decorated Letter (London, 1978) Alexander/Gibson 1976 Alexander, Jonathan J G and Gibson, Margaret T: Medieval Learning and Literature, Essays presented to Richard William Hunt (Oxford, 1976)

    79. Famous Mathematicians With An H
    al Hasib Helmut Hasse Lene Hau Stephen Hawking Louise Hay Ellen Hayes Olive HazlettAbu Ali al Haytham Thomas Heath Oliver Heaviside percy heawood Daniel Hecht
    http://www.famousmathematician.com/az/mathematician_H.htm
    Mathematicians - H
    Alfred Haar
    Jean Hachette
    Jacques Hadamard
    John Hadley
    Hans Hahn
    Jaroslav Hajek
    Abu Ali al-Haitam
    Marshall Jr. Hall
    Philip Hall
    Edmond Halley
    Paul Halmos George Halphen George Halsted Christine Hamill William Hamilton Hankel Hermann Claude Hardy G.H. Hardy Thomas Harriot Brian Hartley Douglas Hartree Abu Kamil al Hasib Helmut Hasse Lene Hau Stephen Hawking Louise Hay Ellen Hayes Olive Hazlett Abu Ali al Haytham Thomas Heath Oliver Heaviside Percy Heawood Daniel Hecht Erich Hecke Earle Hedrick Poul Heegaard Hans Heilbronn Eduard Heine Werner Heisenberg Ernst Hellinger Eduard Helly Hermann von Helmholtz Zhang Heng Olaus Henrici Kurt Hensel Heraclides Jacques Herbrand Pierre Herigone Jakob Hermann Charles Hermite Caroline Herschel John Herschel Yitz Herstein Otto Hesse Hendrik van Heuraet Arend Heyting Graham Higman David Hilbert George Hill

    80. Renaissance Bibliography
    *Adams, percy G., Travelers and Travel Liars, 1660 1 (1984). heawood, E., A HithertoUnknown World Map of AD 1506 , The Geographical Journal, October 1923.
    http://www.henry-davis.com/MAPS/Ren/Ren1/Bib4.html
    *Adams, Percy G., Travelers and Travel Liars, 1660-1800, Dover Publications, N.Y., 1980 reprint of 1962 edition, 292pp.
    *Allen, John L., "Lands of Myth, Waters of Wonder: The Place of the Imagination in the History of Geographical Exploration".
    *Andrews, M.C., "The Study and Classification of Medieval MappaMundi", Archeaologia, vol. LXXV, pp. 61-76,1925-26.
    *Ayusawa, Shintaro, "The Types of World Maps Made in Japan's Age of National Isolation", Imago Mundi, Vol. X, pp. 123-128. (c)
    Babcock, W.H., Legendary Islands of the Atlantic, 1975 reprint of 1922 #8 Amercian Geographical Society Research Series, Book for Library Press, N.Y. (a study in medieval geography).
    *Baddeley, J.F., "Father Matteo Ricci's Chinese World Maps, 1584-1608", R.G.S. Journal , vol. L (1917).
    Bagrow, Leo, History of Cartography, revised ~ enlarged by R.A. Skelton, Harvard University Press, Londo: C.A. Watts, 1964; republished and enlarged Chicago: Precedent Publishing, 1985, 312pp. (c).
    Bagrow, Leo, "The Origin of Ptolemy's Geographia", Geografiska Annaler 27 (1945): pp. 318-87.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter