Geometry.Net - the online learning center
Home  - Scientists - Ferro Scipione Del
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Ferro Scipione Del:     more detail

61. 1000 à 1600 - Chronologie Des Mathématiques
del ferro scipione. 1473-1543. § Copernic. Cardan Jérôme.1520. scipione del ferro. Résolution de trois types d équations cubiques. 1545.
http://villemin.gerard.free.fr/Esprit/Date1000.htm
NOMBRES - Curiosités, théorie et usages Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: Jouer à raisonner: DATES Av. J.-C. Voir aussi Liste alphabétique Dates des inventions du siècle Lien Date Nom Événement Guillaume er le Conquérant Guillaume , William, Wilhem , Villemin, Guillemin … même étymologie Guillaume 1 er Il tue Harold à la bataille d'Hastings et lui reprend la couronne d'Angleterre Guillaume er Tapisserie de Bayeux Fibonacci Leonardo Fibonacci Livres des abaques Leonardo Fibonacci Diffuse en Occident les chiffres indo-arabes Introduit sa fameuse suite de nombres Montségur et les cathares Nicolas Oresme Traité de la sphère Jean Muller Traité des triangles Del Ferro Scipione Copernic Système héliocentrique: la Terre tourne autour du Soleil Nicolas Chuquet Traité d'arithmétique Tartaglia Résolution des équations du 3 e degré Cardan Jérôme Scipione del Ferro Résolution de trois types d'équations cubiques Cardan Résolution des équations du 3 e degré Livre: Grand art de l'algèbre Michel Stifel Arithmétique complète Mercator Projection de la sphère sur le cylindre Nicola Tartaglia Traité des nombres Galilée Shakespeare Raphaele Bombelli Les racines des nombres négatifs sont utiles Kepler Johannes Lois de Kepler Mersenne Hobbes Thomas Construction de Pi approché François Viète L'art de l'analytique Descartes Cartésien - Discours de la méthode en 1637 Loi de Descartes: optique moderne Voir Grands noms de l'histoire des mathématiques

62. BNM: Proyectos
Translate this page D. D’ALEMBERT, JEAN. DANdelIN, GERMINAL. DEDEKIND, RICHARD. del ferro, scipione.delAMBRE, JEAN BAPTISTE. DEMÓCRITO DE ABDERA. DENJOY, ARNAUD. DESARGUES, GIRARD.
http://www.bnm.me.gov.ar/s/proyectos/hea/exposiciones/matematicas/aei.php
Catálogos Proyectos Espacio pedagógico Redes ... Biblioteca, Museo y Archivo Dr. R. Levene Mapa del sitio Preguntas frecuentes Novedades Consultas y sugerencias Carta Compromiso con el Ciudadano Tecnología del sitio bbbbbbbbbbb bb La lista de los hombres de ciencia vinculados a las matemáticas y presentada a continuación no es exhaustiva. Usted puede acceder, a través de esta página, a las biografías de algunos de estos hombres como así también a artículos relacionados con sus obras (en español). Estas páginas a las que remitimos no son de autoría de la biblioteca. A menudo los vínculos no remiten a la posición exacta de la biografía o de la referencia dentro de la página, para ello deberá emplear la opción buscar que posea su navegador e indicar allí el nombre buscado. Seleccionar del abecedario...

63. MATEMÁTICOS Y MATEMÁTICAS EN EL MUNDO GRIEGO
Translate this page El primero en encontrar una fórmula para resolver ciertos tipos de ecuacionescúbicas fue scipione del ferro aunque no los publicó.
http://euler.us.es/~libros/aritmetica.html
De Euclides a Newton: Los genios a traves de sus libros
principal
griegos iberia
De consolatione philosophiae Opera n(n+1)/2 3n(n-1)/2
rithmetica integra rithmetica integra Practica Arithmeticae Ars Magna x Ars Magna
-debemos destacar que el Ars Magna de Cardano estaba escrito de manera muy poco clara-. Su obra L'Algebra L'Algebra idea loca
Canonem mathematicum

principal
griegos iberia Renato Alvarez Nodarse ...
ran
@us.es

64. Storia Dell'Universita' Di Bologna
Translate this page scipione del ferro e Ludovico Ferrari (allievo di Cardano) trovano rispettivamentela formula risolutiva delle equazioni di terzo e di quarto grado.
http://www3.unibo.it/avl/storia/storia9.htm
Gli studi matematici /
Le leggi economiche
(1572) introduce i numeri immaginari. Pietro Antonio Cataldi introduce l'algoritmo delle frazioni continue (1613), Bonaventura Cavalieri nel XVII secolo scrive Geometria indivisibilibus continuorum nova quadam ratione promota (1635) e le Exercitationes Geometricae Sex

65. Storia Dell'Universita' Di Bologna. Gerolamo Cardano
peraltro già scoperta da scipione del ferro e riformulata dal Tartaglia.
http://www3.unibo.it/avl/storia/cardano.htm
Gerolamo Cardano

66. History Of Mathematics: Europe
Johann Widman (bc 1460); scipione del ferro (c. 14651526); Johannes Werner (1468-1522);Albrecht Dürer (1471-1528); Nicolas Copernicus (1473-1543). Bibliography.
http://aleph0.clarku.edu/~djoyce/mathhist/europe.html
Europe
Web sites relevant to the History of Mathematics in Europe
See Greece for mathematicians writing in Greek, and see the general chronology for European mathematicians after 1500.
Mathematicians through 1500
  • Marcus Terentius Varro (116-27 B.C.E.)
  • Balbus (fl. c. 100 C.E.)
  • Anicius Maulius Severinus Boethius (c. 480-524)
  • Flavius Magnus Aurelius Cassiodorus (c. 490-c. 585)
  • Bede (673-735)
  • Alcuin of York (c. 735-804)
  • Gerbert d'Aurillac, Pope Sylvester II (c. 945-1003)
  • Adelard of Bath (1075-1164)
  • John of Seville (c. 1125)
  • Plato of Tivoli (c. 1125)
  • Girard of Cremona (1114-1187)
  • Robert of Chester (c. 1150)
  • Robert Grosseteste (c. 1168-1253)
  • Leonardo of Pisa (Fibonacci) (1170-1240)
  • Alexandre de Villedieu (c. 1225)

67. Full Alphabetical Index
Translate this page 511*) Feller, William (394*) Fermat, Pierre de (2491*) Ferrar, Bill (547*) Ferrari,Lodovico (722) Ferrel, William (130) ferro, scipione del (1407) Feuerbach
http://alas.matf.bg.ac.yu/~mm97106/math/alphalist.htm
Full Alphabetical Index
The number of words in the biography is given in brackets. A * indicates that there is a portrait.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (2899*)
Abraham
bar Hiyya (641)
Abraham, Max

Abu Kamil
Shuja (1012)
Abu Jafar

Abu'l-Wafa
al-Buzjani (1115)
Ackermann
, Wilhelm (205)
Adams, John Couch

Adams, J Frank

Adelard
of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (12)

68. University Of Wisconsin Colleges
Andrews web site is the following about scipione del ferro http//wwwgap.dcs.st-and.ac.uk/~history/Mathematicians/ferro.html.
http://www.uwc.edu/dept/math/math-history/
University of Wisconsin Colleges
Department of Mathematics
History of Mathematics Discussion Group Interesting Web Sites
Cardano's Ars Magna An interesting page from the St. Andrews web site is the following about Scipione del Ferro:
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Ferro.html
The following are links to contributions on the discussion of Cardano's Ars Magna:

69. Tartaglia Et Cardan
Translate this page Remarque scipione del ferro (1465-1 526) fut un précurseur de Tartagliadans ce domaine mais les papiers de celui-ci sont perdus. Cardan.
http://math93.free.fr/Tartaglia-Cardan.htm
Tartaglia (Brescia, 1500?-Venise, 1557)
et Cardan (Pavie, 1501-Rome, 1576) Home Les mathématiciens MATHÉ MATICIENS ITALIENS DU 16e SIÈCLE Les savants italiens du 16° siècle se distinguèrent surtout en algèbre élémentaire. Tartaglia. Nicolo Fontana était surnommé Tartaglia (le bègue) parce que, gravement blessé par l'épée d'un cavalier français, entré dans la grande église de Brescia le 19 février 1512 dans laquelle il se réfugiait avec sa mère, il lui en restait des difficultés d'élocution. (Les troupes françaises étaient menées par le terrible Gaston de Foix, surnommé "foudre d'Italie".) Niccolo qui avait alors 12 ans fut retrouvé la mâchoire fracassée. Aidé seulement par sa mère, veuve depuis 6 ans et trop pauvre pour faire appel à un médecin, il mit très longtemps avant de retrouver la parole.
On raconte que le père de Niccolo (Fontana) avait engagé un professeur pour instruire son fils de 6 ans et que celui-ci arrêta les cours (-après la mort de Monsieur Fontana-) alors qu'il ne lui avait enseigné qu'un tiers de l'alphabet (de A à I). Il poursuivit seul son apprentissage. "Tout ce que je sais, je l'ai appris en travaillant sur les œuvres d'hommes défunts"

70. Weddle2.html
The solution to the cubic has been traced back to scipione del ferro, a mathematicsprofessor at Bologna around the beginning of the sixteenth century.
http://www.ms.uky.edu/~carl/ma330/project2/weddle21.html
Girolamo Cardano and the Solution to the Cubic After discovering in 1543 that Tartaglia's discovery was not really his own, Cardan published the solutions to the cubic and quartic equations after six years of study. In 1545, Cardan's most famous work, Ars Magna revealed these and other solutions. The solutions to these equations were the first major breakthroughs in mathematics since the time of the Greeks. Solving the Cubic Cardan's solution to the cubic is demonstrated in the following steps. The cubic equation is of the form Cardan changed this equation to one with no quadratic term. Using the substitution x = y - a/3 We get x^3 + ax^2 + bx + c = ( y - a/3)^3 + a(y-a/3)^2 + b(y-a/3) + c Aside ( y-a/3)^2 = (y-a/3) (y-a/3) = y^2 - ay/3 - ay/3 + a^2/9 = y^2 - 2ay/3 + a^2/9 ( y-a/3)^3 = ( y-a/3) (y-a/3) (y-a/3) = (y-a/3)^2 (y-a/3) = y^2 - 2ay/3 + a^2/9 (y-a/3) y^3 - 2ay^2/3 + a^2y/9 - ay^2/3 + 2a^2y/9 - a^3/27 = y^3 - 3ay^2/3 + 3a^2/9 - a^3/27 = y^3 - ay^2 +a^2y/3 - a^3/27 Now back to the cubic. Substitute the results from the

71. Historia Matematica Mailing List Archive: Re: [HM] Earliest Priority Dispute?
of the solutions of algebraic equations, starting with alHwarizmi, Fibonacci, LucaPacioli for second degree equations and then scipione del ferro, who passed
http://sunsite.utk.edu/math_archives/.http/hypermail/historia/may99/0183.html
Re: [HM] Earliest priority dispute?
Prof. Lueneburg luene@mathematik.uni-kl.de
Thu, 20 May 1999 17:42:09 +0200 (MESZ)
On Wed, 20 May 1999, Phill Schultz wrote
This is not quite what the sources tell. First of all, there was no dispute
on priority. In his Ars magna, Cardano gives full credit to Tartaglia. He gives
the history of the solutions of algebraic equations, starting with al-Hwarizmi,
Fibonacci, Luca Pacioli for second degree equations and then Scipione del
Ferro, who passed his knowledge to Antonio Maria Fiore who challenged
Tartaglia with this knowledge. Tartaglia found finally the solution of the
30 problems Fiore had proposed. They were all of the same kind (except one)

72. Historia Matematica Mailing List Archive: Re: [HM] The Tartaglia/Cardano Controv
The plural students here is actually a dual. Annibale dalla Nave and AnonioMaria Fiore got the information on the cubic from scipione del ferro.
http://sunsite.utk.edu/math_archives/.http/hypermail/historia/may99/0184.html
Re: [HM] The Tartaglia/Cardano controversy
Prof. Lueneburg luene@mathematik.uni-kl.de
Fri, 21 May 1999 09:35:15 +0200 (MESZ)
On Thur, May 20, Dr. John W. Dawson, Jr. wrote among other things:
The plural "students" here is actually a dual. Annibale dalla Nave and
Anonio Maria Fiore got the information on the cubic from Scipione del
Ferro. Annibale dalla Nave was the son-in-law of del Ferro and his
successor as a professor of mathematics at the University of Bologna.
He was in the possession of del Ferro's papers Cardano and Ferrari saw
visiting Bologna.
Antonio Maria Fiore was the one who challenged Tartaglia. The thirty
problems he posed to Tartaglia were published by Tartaglia in Quesito
XXXI. They all lead to equations of the form x^3 + px = q except the 16th one which leads to the equation 14 + x = x^5 + 2x^3. One of the

73. Democratici Di Sinistra - Federazione Di Bologna - Comunicazione
scipione del ferro Lefoto scattate da Stefano Santi durante l incontro tra il candidato Sindaco e
http://www.dsbologna.it/pagine/archivio_scheda.php?t=comunicazione&cat=28

74. Re: Cube Root Of 2 By Julio Gonzalez Cabillon
What are the reasons or historical circumstances that led the Greeks and thefuture generations up to scipione del ferro to have not computed or
http://mathforum.org/epigone/math-history-list/binprimpfro/1.5.4.32.199611160509
Re: cube root of 2 by Julio Gonzalez Cabillon
reply to this message
post a message on a new topic

Back to messages on this topic
Back to math-history-list
Subject: Re: cube root of 2 Author: jgc@adinet.com.uy Date: The Math Forum

75. Zero, Liczby Zespolone I Inne Takie
scipione del ferro (14651526) wloski papiernik zapisal znany dziswszystkim wzór na pierwiastki równania kwadratowego ( -b
http://www.u.lodz.pl/~wibig/hieronim/hie10pok.htm
Zero, liczby zespolone i inne takie
  • Brahmasphutasiddhata
  • to
  • gomutrika
  • Liber embadorum
  • algorytm
  • x +mx=n dla m,n >0
    x =mx+n
  • Ars Magna
  • liczbach zespolonych
  • Wielomian stopnie n n
  • imagine n ma n
  • Ten sam Euler w roku 1777 wprowadza na oznaczenie symbol i
  • kwaterniony
  • oktoniony
  • liczby Cayleya
  • ab a = lub b a b a ab a b algebrami rzeczywistych zespolonych i

76. LaTeX Source For Solution Of Cubic And Quartic \documentclass
The case of the cosa and the cube, in modern notation the case $y^3+cy=d$ where$c$ and $d$ are positive, was solved by scipione del ferro (14651626) early
http://www.york.ac.uk/depts/maths/histstat/cubic.htm
LaTeX source for solution of cubic and quartic

77. Cultura - Consultazione Architetture Del '900
del ferro in Toscana sorge in fregioa via scipione Ammirato , nel piccolo e medio borghese del primo Novecento
http://www.regione.toscana.it/ius/ns-cultura/?MIval=a9_seconda&TOPO=100020&PROV=

78. Cronologia Generale
Translate this page pubblica per la prima volta la formula della soluzione delle equazioni di terzogrado, che era stata scoperta circa venti anni prima da scipione del ferro.
http://galileo.imss.firenze.it/milleanni/cronologia/crogen/igen1500.html
Cronologia generale
Amerigo Vespucci Alessandro Benedetti stampa l' Historia corporis humani sive anatomice , il primo manuale di anatomia pubblicato in Occidente. Leonardo da Vinci redige a Firenze il Codice sul volo degli uccelli Luca Pacioli pubblica l'edizione definitiva del De divina proportione , che tratta dell'applicazione dei principi geometrici all'architettura e dello studio delle proporzioni del corpo umano. Il testo presenta xilografie dei solidi regolari realizzate da disegni di Leonardo. Tra i 18 superstiti degli oltre 200 uomini a bordo delle navi guidate dal portoghese Ferdinando Magellano Antonio Pigafetta , autore della relazione della grande impresa. Giovanni da Verrazzano esplora la costa orientale dell'America del Nord. Penetra per primo nell'odierna baia di New York. Girolamo Fracastoro De contagione et contagiosis morbis et curatione , testo alla base della moderna patologia, nel quale per la prima volta si attribuisce l'origine delle malattie contagiose a seminaria o virus, agenti vivi che contaminano uomini e animali. applica il metodo geometrico allo studio del moto dei proiettili nell'opera La nova Scientia Il belga Andrea Vesalio De humani corporis fabrica , uno dei testi alla base dell'anatomia moderna, pubblicato a Basilea nel 1543.

79. Grundoperationen
Translate this page Historischer Abriss. ~1520 scipione del ferro (1465 - 1526) findet Lösungsformelfür Gleichungen der Form x 3 =bx+a. Verrät sie aber niemanden.
http://www-hm.ma.tum.de/ws0304/in1/links/Historie/Historie.html
Historischer Abriss
Scipione del Ferro (1465 - 1526) findet Lösungsformel für Gleichungen der Form x =bx+a. Verrät sie aber niemanden.
del Ferro stirbt. Verrät die Formel seinem Schüler
Anton Maria Fior
Fior fordert Niccolo Tartaglia (1499-1557) zum mathemati- schen Duell. Tartaglia findet auch eine Formel für Gleichungen 3. Grades und gewinnt.
Tartaglia verrät (nach langem "Umgarnt werden") seine Formel an Girolamo Cardano (1501-1567) . Dieser schwört sie nicht zu veröffentlichen.
Cardano und sein Schüler Lodovico Ferrari (1522-1565) arbeiten an Gleichungen 4. Grades. Sie erfahren, dass Tartaglia nicht der erste mit der Formel für 3. Grad war. Cardano veröffentlicht die Formel in seiner "Ars Magna".

80. Azienda Autonoma Di Soggiorno E Turismo Enna
Translate this page di sinistra è il battistero, chiuso da un cancello di ferro battuto riccamente episodidel Vecchio e Nuovo Testamento, e viene attribuito a scipione del Guido
http://www.vivienna.it/aate/aate.php?article=aate2.html

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter