Geometry.Net - the online learning center
Home  - Scientists - Ferro Scipione Del
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Ferro Scipione Del:     more detail

41. Dario Ferro Monete Adamaney Collezionismo E Numismatica Zecca Di Savona
Translate this page di denari consolari romani (nella foto un esemplare di Cornelio scipione Asiageno,105 aC della moneta, che può essere il campo o un particolare del dritto o
http://digilander.libero.it/adamaney/glossario.htm
PICCOLO GLOSSARIO NUMISMATICO Acmonital Nome dato dalla zecca di Roma ad una lega di acciaio; "Acciaio monetario italiano". Anepigrafe Si dice di moneta o lato privi di iscrizioni. Appiccagnolo Anello saldato al contorno di una moneta per usarla come ciondolo o simile. Biglione Cfr. Mistura Bordo La parte esterna dei lati di una moneta, in genere costituita da un cerchio, archetti o simili, entro cui sono racchiuse figurazioni e legenda. Con questo termine è anche indicato il Contorno o Taglio (cfr.). Bratteate Tipo di monete medioevali d'argento; incuse e di diametro assai ampio rispetto allo spessore. Bronzital Nome dato dalla zecca di Roma ad una lega di bronzo. Campo Lo "sfondo" delle figurazioni e delle legenda (cfr.) Carato (K) In numismatica è l'unità di misura che generalmente indicava la quantità di metallo nobile, espressa in ventiquattresimi, contenuta in una moneta: così avremo, per l'oro 750/.., 18 carati. L'etimologia deriva dall'arabo qirat , vale a dire il seme di carruba.

42. FERRO-TIME Prescription Drug Information - Buy, Purchase Or Order FERRO-TIME Onl
http//health_info.nmh.org/ ferro Biography of scipione del ferro (14651526) http//www-groups.dcs.st-and.ac.uk/Medical Transcription Resources and Medical
http://www.thedrugdatabase.com/directory/F/Ferro-Time
Search for Drug Information Resources: The Drug Database F > Ferro-Time
Top 10 Sponsored Ferro-Time Information Resources
Ferro
Biography of Scipione del Ferro
http://www-groups.dcs.st-and.ac.uk/
ferrous sulfate

Ferrous sulfate is a form of the mineral iron. Iron is important for many functions in the body, especially for the transport of oxygen in the blood. Ferrous sulfate is used as a dietary ...
http://www.peacehealth.org/
World Health Survey: Register to participate in clinical trials. Provide feedback about the side effects you have experi

World Health Survey: Register to participate in clinical trials. Complete the survey to provide feedback about the side effects you have experienced from prescription drugs you have taken.
http://www.worldhealthsurvey.com/
Wolverine X-Fiction

A website dedicated to the characters from the X-Men Fandom; general emphasis on Logan, though other characters appear. Content includes wallpapers, clone adoptions, fan fiction, original art and ... http://www.wxfonline.com/ Center for Drug Safety Offers PERSONALIZED Drug Interaction Screenings;Drug Interaction:Drug information, Prescription D

43. Formula Di Cardano
a Gerolamo Cardano (anche se già Tartaglia e scipione del ferro prima di lui
http://www.matematicamente.it/cimolin/formula/formula14.htm
Formula di Cardano Per secoli i matematici, dopo aver trovato la famosa formula risolutiva delle equazioni di 2° grado, hanno tentato di determinare una formula per trovare la radice della generica equazione di 3° grado: a x + b x + c x + d = Per riuscire a risolvere tale equazione, bisogna dapprima trasformarla in una più semplice (ed è sempre possibile con opportune sostituzioni) del tipo: x + p x = q La formula che fornisce una delle tre radici dell'equazione, la cui paternità è attribuita a Gerolamo Cardano (anche se già Tartaglia e Scipione del Ferro prima di lui risolsero il problema) è la seguente: Uno dei motivi per cui questa formula è degna di nota, sta nel fatto che visto che p può essere positivo o negativo, ed il cubo di p non ne altera il segno, può capitare di trovarsi a lavorare con delle radici di numeri negativi! Questa formula fu il primo grande passo che diede la fiducia ai matematici del rinascimento che potessero "esistere" degli altri numeri, i cosiddetti numeri complessi , comprendenti anche le radici dei numeri negativi.

44. Niccolo Tartaglia - Ciencia.net - Noticias Científicas
Translate this page de un método para resolver ecuaciones de tercer grado, estando ya en Venecia, en1535 su colega del Fiore discípulo de scipione del ferro quien anteriormente
http://www.ciencia.net/VerArticulo/Niccolo-Tartaglia?idArticulo=dsfjunejkcjs8nq2

45. Ninemsn Encarta - Encyclopedia Article Centre - Scientists & Inventors
F, Fahrenheit, Gabriel Daniel * Faraday, Michael * Fermat, Pierre de * Fermi, Enrico* Ferranti, Sebastian Ziani de * ferro, scipione del * Feynman, Richard
http://au.encarta.msn.com/artcenter_0.6.4/Scientists_Inventors.html
ninemsn Home Hotmail Search Shopping ... Upgrade to Encarta Premium Search Encarta Encyclopedia Article Centre from Encarta Encyclopedia Articles Geography History Performing Arts ... Exclusively for ninemsn Encarta Premium Subscribers A Abel, Niels Henrik
Adams, John Couch

Adams, Walter Sydney

Agricola, Georgius
...
Avogadro, Amedeo, Conte di Quaregna e Ceretto

B Baade, (Wilhelm Heinrich) Walter
Babbage, Charles

Babcock, Stephen Moulton

Bacon, Roger
...
Buys Ballot, Christoph Hendrik Diederik

C Cai Lun Calvin, Melvin Campbell, William Wallace Cannizzaro, Stanislao ... Curtiss, Glenn Hammond D Daimler, Gottlieb Dalton, John Dana, James Dwight Darby, Abraham ... Dyson, Freeman E Eastman, George Eckert, John Presper Eddington, Sir Arthur Stanley Edgerton, Harold Eugene ... Ewing, (William) Maurice F Fahrenheit, Gabriel Daniel Faraday, Michael Fermat, Pierre de Fermi, Enrico ... Fulton, Robert G Gabor, Dennis Galileo (scientist) Galois, ‰variste Gamow, George ... Guericke, Otto von H Haber, Fritz Hahn, Otto Hale, George Ellery Halley, Edmond ... Huygens, Christiaan I Ingold, Sir Christopher Issigonis, Sir Alec J Jacobi, Karl Gustav Jakob

46. Giambattista Aleotti E Gli Ingegneri Del Rinascimento
Translate this page Tartaglia, il cui nome assieme a quelli di Girolamo Cardano e scipione del ferro,è legato alla massima scoperta matematica del Rinascimento, la formula
http://www.unife.it/aleotti/introd.htm
Giambattista Aleotti e gli ingegneri del Rinascimento
Lo studio delle tecniche ha spesso trattato il Rinascimento in modo uniforme come se Francesco di Giorgio Martini, Leonardo da Vinci, Andrea Palladio, Guidobaldo dal Monte, Federico Commandino fossero quasi dei contemporanei. Invece tra la fine del Quattrocento e la fine del Cinquecento non sono pochi gli elementi nuovi e influenti come ad esempio la nascita di una editoria scientifica: Euclide Archimede Nova scientia

47. Complex Analysis
speaking disorder). The solution was also independently discovered some30 years earlier by scipione del ferro of Bologna. ferro and
http://math.fullerton.edu/mathews/c2002/ca0101.html
COMPLEX ANALYSIS: Mathematica 4.1 Notebooks
(c) John H. Mathews, and
... COMPLEX NUMBERS Section 1.1 The Origin of Complex Numbers Complex analysis can roughly be thought of as that subject which applies the ideas of calculus to imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about them in high school with introductory remarks from their teachers along the following lines: "We can't take the square root of a negative number. But, let's pretend we can-and since these numbers are really imaginary , it will be convenient notationally to set ." Rules are then learned for doing arithmetic with these numbers. The rules make sense. If , it stands to reason that . On the other hand, it is not uncommon for students to wonder all along whether they are really doing magic rather than mathematics.
If you ever felt that way, congratulate yourself! You're in the company of some of the great mathematicians from the sixteenth through the nineteenth centuries. They, too, were perplexed with the notion of roots of negative numbers. The purpose of this section is to highlight some of the episodes in what turns out to be a very colorful history of how imaginary numbers were introduced, investigated, avoided, mocked, and-eventually-accepted by the mathematical community. We intend to show you that, contrary to popular belief, there is really nothing imaginary about "imaginary numbers'' at all. In a metaphysical sense, they are just as real as are "real numbers.''

48. Tartaglia Frente A Cardano
Translate this page cúbica de alguna fuente anterior, probablemente de un profesor de matemáticasde la universidad de Bolonia casi totalmente olvidado, scipione del ferro.
http://ific.uv.es/rei/Historia/anecdotas3.htm
Tartaglia frente a Cardano. Se suele hacer coincidir el comienzo del álgebra moderna con la resolución de la ecuación cúbica (y cuártica también) en el Ars Magna escrita por Jerónimo Cardano (1501-1576). Sin embargo, hay que advertir inmediatamente que el descubridor original de dicha solución no era el autor, sino Niccolo Tartaglia (1500-1557), pese a que Cardano le había jurado solemnemente no desvelar el secreto pues Tartaglia esperaba publicar el resultado como culminación de su propio tratado de álgebra que estaba elaborando. Para evitar sentir una compasión excesiva por Tartaglia, hagamos notar que éste ya había publicado una traducción de Arquímedes, dejando la impresión de que el contenido era suyo propio, y más tarde, en su obra Quesiti et inventioni diverse proporciona la ley del plano inclinado obtenida a partir del trabajo anterior de Jordano Nemorario, pero sin atribuirla adecuadamente a su verdadero descubridor. De hecho, es posible que el mismo Tartaglia hallase la pista de la resolución de la ecuación cúbica de alguna fuente anterior, probablemente de un profesor de matemáticas de la universidad de Bolonia casi totalmente olvidado, Scipione del Ferro. La solución de las ecuaciones cúbica y cuártica fue probablemente la mayor aportación al álgebra desde que los babilonios habían aprendido, casi cuatro milenios antes, a completar un cuadrado para resolver ecuaciones cuadráticas. Las soluciones no tenían en realidad aplicación práctica alguna, pero las fórmulas de Tartaglia-Cardano tuvieron la virtud de estimular el desarrollo del álgebra, con un papel ciertamente relevante en el desarrollo posterior de los números complejos. En efecto, fue

49. Relación Completa De Matemáticos
Translate this page Parece que el primer inventor fue scipione del ferro, profesor de matemáticasde la universidad de Bolonia, que resolvió la ecuación x³+px=q, el cual
http://www.amejor.com/mates/Historia/carpeta1/tartaglia.htm
Relación completa de Matemáticos Su época A mediados del siglo XIV Europa padece la peste negra, epidemia de grandísimas dimensiones que acabó con un tercio de la población. Por otra parte, los países donde se concentraban los matemáticos y científicos, Francia e Inglaterra, sufrieron dos largas guerras, la Guerra de los Cien Años y la Guerra de las Dos Rosas, que impidieron un desarrollo de las abras de los filósofos escolásticos de Oxford y París. Por ello, el florecimiento de las universidades italianas, alemanas y polacas constituyó un relevo de los puntos culturales. En el año 1453 Constantinopla es tomada por los turcos musulmanes, lo que supuso la extinción del imperio bizantino, provocando a su vez la salida para Italia de numerosos refugiados bizantinos, llevándose consigo manuscritos originales de la civilización griega prácticamente desconocidos para los europeos. Este acontecimiento histórico supuso, a medio plazo, trasladar la actividad cultural y matemática hacia el occidente europeo, con un resurgimiento hasta entonces desconocido. Otro hecho es determinante en este proceso: la invención de la imprenta. Hasta entonces, y gracias sobre todo al florecimiento de las universidades a partir del siglo XIII, se había desarrollado una industria de copistas conventuales cuyas dimensiones iban más allá del simple trabajo artesano. La imprenta supuso su extinción progresiva, y una mayor unificación de conocimientos, pues el poseedor de un manuscrito era incapaz de saber de su autenticidad, debido a las variantes que los copistas introducían. Sin embargo, también los impresores se dedicaron a poner variantes y añadidos en ciertas impresiones.

50. ThinkQuest : Library : Mathematics History
Avout 1515, scipione del ferro (14651526), a professor of mathematics at theUniversity of Bologna, solved algebraically the cubic equation x 3 + mx = n
http://library.thinkquest.org/22584/emh1400.htm
Index Math
Mathematics History
An extensive history of mathematics is at your fingertips, from Babylonian cuneiforms to advances in Egyptian geometry, from Mayan numbers to contemporary theories of axiomatical mathematics. You will find it all here. Biographical information about a number of important mathematicians is included at this excellent site. Visit Site 1998 ThinkQuest Internet Challenge Languages English Korean Students Hyun-jin Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Kyung-sun Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South So-young Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Coaches Jae-yun Jae-yun Hwang(Seoul Yo Sang), Kwan-ak Gu, Korea, South Jong-hyun Jong-hyun Lee(Seoul Yo Sang), Kwan-ak Gu, Korea, South Dea-won Dea-won Ko (Seoul Yo Sang), Kwan-ak Gu, Korea, South Want to build a ThinkQuest site? The ThinkQuest site above is one of thousands of educational web sites built by students from around the world. Click here to learn how you can build a ThinkQuest site.

51. Informacion Elena
Translate this page scipione del ferro (1465-1526), Tartaglia (1490-1557), Cardano (1501-1576) mostraroncómo resolver ecuaciones de tercer grado, y Ferrari (1522-1565) encontró
http://www.mate.uncor.edu/elena2/cursos.html

52. TOSCANA ETRUSCA, IMMENSA: BREVE ITINERARIO Volterra E Populonia - Turismo Di *Ar
Translate this page 205 fornì ferro per la spedizione di scipione in Africa ferro che nel II secolo nonè più lavorato Alla fine dei conti, la lavorazione del ferro nell’area
http://www.arcobaleno.net/turismo/Volterra-Populonia.htm
Prima pagina
Editoriale
Attualità
Cultura
Costume
Spettacolo
Personaggi
Turismo
Salute

Sport
Agenda Oroscopo Curiosità Consulente Giardinaggio Cucina Dentino avvelenato I nostri link E-mail Anno 4 Numero 3 Direttore responsabile Antonia Geninazza Registrazione Tribunale di Roma n° 542/98 del 18.11.1998 Arcobaleno è una testata regolarmente registrata, ne è vietata la riproduzione, anche se parziale, senza preventiva autorizzazione
Turismo
TOSCANA ETRUSCA, IMMENSA: BREVE ITINERARIO Volterra e Populonia Almalinda Giacummo Aree etrusche di sicura fama sono senz’altro Volterra e Populonia. La prima, Volterra, presenta testimonianze villanoviane fin dal IX sec. a.C. con sepolture nelle necropoli della Badia, delle Ripaie e della Guerruccia, in stretta connessione con la contemporanea cultura di Felsina (Bologna). Durante l’età orientalizzante, il rito funebre è ancora legato alle tradizioni villanoviane, ma sono comunque evidenti i contatti con le coeve manifestazioni artistiche e commerciali dell’Etruria Meridionale: il cinerario di Montescudaio reca sul coperchio una rappresentazione del defunto a banchetto, in una tomba della Badia sono stati rinvenuti unguentari etrusco-corinzi approdati in queste zone dal porto di Populonia. All’inizio del VI secolo si diffondono le tipiche tombe a tholos , tombe costruite con una copertura a volta di lastre di pietra aggettanti, sorrette da un pilastro centrale (esempi da Casale Marittimo, Casaglia, Bolgheri e Bibbona), con corredi confrontabili con quelli di Populonia, in età arcaica lo sbocco al mare dell’intero territorio. Testimonianza ulteriore è sicuramente il tesoretto di monete focesi e massaliote e la forte ondata di stile ionizzante rintracciabili a Volterra: esempio di quest’ultimo stile sono le stele iscritte con guerrieri, alcuni bronzetti e la Testa Lorenzini, in marmo. Intorno alla seconda metà del VI secolo nasce la città comunemente intesa, con la costruzione di una cinta di mura e di edifici stabili con tetto di tegole: si stendeva su un basamento di argille plioceniche dette biancane, Volterra dovette anche partecipare alla rifondazione di Felsina (cippi marmorei con testa di ariete), ed alla rifondazione di Marzabotto.

53. Vereda-edu Titulo: Alejandría BE 5.2.0.6r
Translate this page El escándalo más notorio fue la solución de la ecuación de tercer grado, atribuidaa scipione del ferro por comentarios posteriores, pero sin documentos
http://vereda.saber.ula.ve/cgi-win/be_alex.exe?Titulo=Tema B.2.1 : El Álgebra C

54. CATHOLIC ENCYCLOPEDIA: Nicolo Tartaglia
contest with Antonio del Fiore, held in 1535, he had shown the superiority of hismethods to the method previously obtained by scipione del ferro (d. 1526) and
http://www.newadvent.org/cathen/14461c.htm
Home Encyclopedia Summa Fathers ... Z
(T ARTALEA TARTAGLIA'S Quesiti (Venice, 1554); BITTANTI, (Brescia, 1871); BUONCOMPAGNI, ed. CREMONA AND BELTRAMI, in Collectanea math., Mem. Dom. Chelini (Milan, 1881), 363-410; GIORDANI, I sei cartelli di mat. disfida primamente intorno alla generale risoluzione delle equazioni cubiche con sei Contro-Cartelli in risposta di N. T. (Milan, 1876); ROSSI, Elogi di Bresciani illustri (Brescia, 1620), 386; TONNI-BAZZA, in R. Accad. dei Lincei, Rendiconti, Classe d. sci. fis. , ser. 5, X, pt. II (Rome, 1901), 39-42; TONNI-BAZZA, , loc. cit., ser. 5, XIII, pt. I (Rome, 1904), 27-30. PAUL H. LINEHAN
Transcribed by Thomas J. Bress The Catholic Encyclopedia, Volume XIV
Nihil Obstat, July 1, 1912.
Remy Lafort, S.T.D., Censor
Imprimatur. +John Cardinal Farley, Archbishop of New York If an ad appears here that contradicts Catholic teachings, please click here to notify the webmaster. Praise Jesus Christ in His Angels and in His Saints
New Advent is dedicated to the Immaculate Heart of Mary

55. Hoofdstuk 1
In ongeveer 1515 loste scipione del ferro (14651526), een professor in de wiskundeaan de Universiteit van Bologna, de vergelijking x 3 + px = q algebraïsch
http://home.wanadoo.nl/wvdput/Geschiedenis/Werkstuk/hoofdstuk_1.htm
Hoofdstuk 1: Algebra in de zestiende eeuw in Italië In de 16de eeuw publiceerden veel Italiaanse wiskundigen hun ontdekkingen niet. Ontdekkingen waren bedrijfsgeheimen. Wie namelijk in staat was om problemen op te lossen die voor collega's te moeilijk waren had meer aanzien, en dus meer leerlingen en dus een beter belegde boterham. Er was nog geen overheid die voor onderwijs zorgde. Wie toen in Italië wiskunde wilde leren moest daar geld voor neertellen. In openbare duels gaven de wiskundigen elkaar problemen op, en wie de meeste van die problemen kon oplossen had de meeste leerlingen. Zo eenvoudig was dat, en geheimhouding van methoden was dus van levensbelang. Een probleem dat in het begin van de 16de eeuw vaak bij dit soort duels op tafel kwam was het algebraïsch oplossen van derdemachtsvergelijkingen. Men had het idee dat die niet met een soort abc-formule opgelost zouden kunnen worden, maar blijkbaar wilde niet iedereen dat geloven, want het probleem werd steeds opnieuw bestudeerd. Rond 1500 was de Universiteit van Bologna een der grootste en beroemdste scholen van Europa. In het verleden hebben verschillende personen ontdekt dat sommige derdegraadsvergelijkingen algebraïsch konden worden opgelost, de wiskundige van de Universiteit van Bologna poogden echter de algemene oplossing te vinden. De derdegraadsvergelijkingen konden tot drie soorten worden teruggebracht; in onze tegenwoordige notatie: x px q x px q x q px waarbij p en q positieve getallen waren.

56. Ferrari
possession of a highly precious notebook, that he got from his late fatherin-law,the great(..but rather unknown) mathematician scipione del ferro (6.2.1465
http://homepage.hispeed.ch/milano/ferrari.html
2004, MILAN ONDRUS
Lodovico Ferrari 2.Febr.1522(Bologna) - 5.Oct.1565(Bologna)
There seems to be no picture of this brilliant mathematician existing
There is not much known about this gifted mathematician, most of the things we know about him, we thank
to Cardano. He originated from a family, who lived as refugees from Milan in Bologna. There are no proofs,
that Lodovico had any specific school education when he joined Cardano, but to Cardano's surprise he could
read and write. Cardano soon recognized Lodovico's ability, and he freed him up from all the works in the
household. Cardano introduced Lodovico to mathematics and the Greek and Latin languages. Lodovico became
Cardano's secretary (he helped him with all the manuscripts) and a loyal confidant for many years. In the
year 1540 Lodovico discovered an elegant way of solving the quartic equation, but it completely relied
upon the solution of the cubic equation, but because Cardano promised (under oath) to Tartaglia to not publish his(Tartaglia's) solution, Lodovico could not publish his own discovery. This impossible situation forced Cardano and Ferrari to consult their collegue della Nave in Bologna in the year 1543. They

57. Dove Siamo
Translate this page 6088311. Filippini, via Manzoni, 5 BOLOGNA, +39 051 230682. Devoniani,via scipione del ferro, 4 BOLOGNA, +39 051 345834. Frati Minori,
http://www.amitie.it/hotelsbo.htm
HOTEL ADDRESS PRICE
(ITL or Euro) about
For the booking, please refer to the special rate agreed on with AMITIE/ SCIENTER HOTEL TRE VECCHI****
Special Rate Amitié/Scienter Via dell'Indipendenza, 47
40121 BOLOGNA
Ph.: +39 051 231991
Fax: +39 051 224143
e-mail: hoteltrevecchi@zanhotel.it
http//www.zanhotel.it
Single room 110
Double room 158
Double room (used as single) 134 HOTEL HOLIDAY***
Convenction Amitié/Scienter Via Bertiera, 13 40126 BOLOGNA Ph.: +39 051 235326 Fax: + 39 051 235326 Single room 80 Double room 98 Double room (used as a single) 80 HOTEL IL CANALE*** Convenzione Amitié/Scienter Via Bertiera, 2 40126 BOLOGNA Ph.: +39 051 222098 Fax: + 39 051 230039 e-mail: hoteltrevecchi@zanhotel.it http//www.zanhotel.it Single room 93 Double room 140 Double room (used as a single) 111 HOTEL MILLENNIUM*** Acuerdo Amitié/Scienter Via Boldrini, 4 40121 BOLOGNA Ph. +39 051 6087811 Fax + 39 051 6087888 Single room 75 Double room 120 Double room (used as a single) 80 HOTEL OROLOGIO*** Convenction Amitié/Scienter Via IV Novembre, 10 40100 BOLOGNA Ph. +39 051 231253

58. Cardano Y Tartaglia
Translate this page scipione del ferro. El álgebra en silencio Niccoló Tartaglia. Mucho más queun triángulo Gerolamo Cardano. Renacentista tenaz Ludovico de Ferrari.
http://www.nivola.com/cardanoindex.htm
  • De la Edad Media al Renacimiento El siglo XV
  • Las matemáticas del ábaco
  • Regiomontano y la trigonometría
    Alberto Durero y la geometría
    El calendario gregoriano. Un problema de astronomía
    Luca Pacioli y la Summa de Arithmetica
  • Dos problemas de Maestro Biaggio comentados por Maestro Benedetto
    Los versos con los que Tartaglia comunicó la solución a Cardano
    La demostración de Cardano de la regla de la ecuación cúbica
    Análisis de la demostración de Cardano
    La resolución de la ecuación general de tercer grado
    La demostración de Bombelli
    El caso irreducible y los números complejos La resolución de la ecuación de cuarto grado
  • Los protagonistas de esta historia Scipione del Ferro. El álgebra en silencio Niccoló Tartaglia. Mucho más que un triángulo Gerolamo Cardano. Renacentista tenaz Ludovico de Ferrari. La idea en un destello Rafael Bombelli. El valor de la claridad
  • Puntos suspensivos Panorama de los siglos XV y XVI Bibliografía
  • Portada Contraportada Otras obras

    59. Mathem_abbrev
    Faà di Bruno, Francesco Farisi, Kamal al Fermat, Pierre de Ferrar, William Ferrari,Lodovico ferro, scipione del, Fibonacci, Leonardo Fine, Henry Fiske, Thomas
    http://www.pbcc.cc.fl.us/faculty/domnitcj/mgf1107/mathrep1.htm
    Mathematician Report Index Below is a list of mathematicians. You may choose from this list or report on a mathematician not listed here. In either case, you must discuss with me the mathematician you have chosen prior to starting your report. No two students may write a report on the same mathematician. I would advise you to go to the library before choosing your topic as there might not be much information on the mathematician you have chosen. Also, you should determine the topic early in the term so that you can "lock-in" your report topic!! The report must include: 1. The name of the mathematician. 2. The years the mathematician was alive. 3. A biography. 4. The mathematician's major contribution(s) to mathematics and an explanation of the importance. 5. A historical perspective during the time the mathematician was alive.
    Some suggestions on the historical perspective might be:
    (a) Any wars etc.
    (b) Scientific breakthroughs of the time
    (c) Major discoveries of the time
    (d) How did this mathematician change history etc.

    60. Algebra In The Renaissance
    x + px = q; x = px + q; x + q = px (p, q 0). scipione del ferro (c.1465 1526),one of the teachers at the University of Bologna, found an algorithm for the
    http://www.maths.wlv.ac.uk/mm2217/ar.htm
    The Development of Algebra in the Renaissance
    Notation
    The existing knowledge of both arithmetic and algebra came to Western Europe through the study of Arab mathematics. But not until the fifteenth century were symbols used, as Diophantus had done, for the commonest arithmetical operations. About that time, the symbols and for plus and minus were usual in Italy and France. They had been introduced by Lucia Pacioli (1445-1514) as abreviations for the words piu (more) and meno ( less). The symbols + and - occurred in Germany in 1480. These symbols were first to be printed in 1489 in a book by the Rechenmeister Johan Widmann. The symbols and for multiplication and division do not appear until the 17th century. At this time, the sign for equality caught on, although it occurs earlier in an algebra textbook by the englishman Robert Recorde (1510-58), which appeared in 1557. Recorde introduced the sign with the justification that no two things can be more equal than a pair of parallel lines. Albert Girard (1595-1632) seems to have been the first to give negative solutions full recognition. Also, the interpretation of negative numbers as line segments in the opposite direction was taken up again. However a precise foundation for the arithmetic of negative numbers had to wait until the beginning of the nineteenth century. Complex numbers were used from the 16th century, initially to aid in the solution of cubic equations, but these were viewed with even more scepticism.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter