Geometry.Net - the online learning center
Home  - Scientists - Feigenbaum Mitchell
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Feigenbaum Mitchell:     more detail
  1. Chaos: The New Science (Nobel Conference XXVI) by John Holte, James Gleick, et all 1993-03-19
  2. Current conservation and double spectral representations for scattering of vector particles by Mitchell J Feigenbaum, 1971

81. RFI - Class Structure And Non-Linear Social Dynamics
feigenbaum, mitchell, 1978 Quantitative Universality for a Class of Nonlineartransformations, in the Journal of Statistical Physics, 192552.
http://www.critcrim.org/redfeather/lectures/stru-cls.htm
CLASS STRUCTURE AND NON-LINEAR SOCIAL DYNAMICS
T. R. Young
The Red Feather Institute and Texas Woman's University
Denton, Tx., 76204 Prepared for the 1995 Meetings of the North Central Sociological Association
and the session on Social Stratification, Wm. Flint, Organizer.
Distributed as part of the Red Feather Institute Transforming Sociology Series.
The Red Feather Institute, 8085 Essex, Weidman, Michigan, 48893. CHAOS AND THE CONCEPT OF STRUCTURE. A. THE PROBLEMATIC: Postmodern critiques of structure and 'grand narratives' are pointed at modernists conceptions of structure and process. The new sciences of chaos and complexity render such critiques of limited scope. The geometry of actually existing 'structures' do not fit the tight and tidy models of structures such that boundaries can be clearly drawn, cases assigned unambiguously and correlations derived which are always and everywhere valid.
Instead, we see that in nonlinear social dynamics:
    1. Process may or may not become structure
    2. There are five dynamical states marked by bifurcations in one or more key variables producing 'structure;'

82. Onet.pl - Polityka - Czytelnia
W istocie Yorke odkryl sposób przewidywania, kiedy uklad stanie sie nieprzewidywalny.Nastepny krok wykonal mitchell feigenbaum, fizyk z Los Alamos.
http://czytelnia.onet.pl/0,1161319,do_czytania.html

Czat
Poczta Onet.pl onet.pl ... czytelnia szukaj: Czytelnia Strony WWW: W polskim Internecie ¦wiatowy Internet Katalog stron Wiadomo¶ci Niusy Pliki Encyklopedia WIEM Og³oszenia: Praca i rekrutacja Motoryzacyjne Nieruchomo¶ci
Wiadomo¶ci

Ksi±¿ka tygodnia

Czat Czytelni

Rozmowy
...
William Wharton

Twój e-mail:
wiêcej

Serwis S. Lema

Biblioteka
S³owniki ... Publikacje w Internecie Najpopularniejsze w tym tygodniu: Ja wam poka¿ê Mózg i p³eæ ¯ycie jest opowie¶ci± wiêcej ... napisz do nas Droga do chaosu Fragmenty ksi±¿ki "Na tropach przeznaczenia" Opis porz±dku za pomoc± odpowiednich miar ilo¶ciowych by³ jednym z g³ównych problemów teorii uk³adów dynamicznych w latach siedemdziesi±tych i osiemdziesi±tych. Gdy naukowcy z ró¿nych dziedzin zdali sobie sprawê z rozpowszechnienia chaosu, zaczêli poszukiwaæ w nim wysepek porz±dku i znajdowali je niemal wszêdzie, co by³o oczywi¶cie wielkim pokrzepieniem. Paul Halpern Ksi±¿ka Na tropach przeznaczenia. Z dziejów przewidywania przysz³o¶ci O autorze Paul Halpern Jerzy £ukosz Fragmenty W³óczêga, hazard i równania O motylach i burzach Dziwne atraktory Ograniczenia obliczeñ W uk³adach chaotycznych mo¿na wykryæ pewne regularno¶ci, od wymiarów fraktalnych do sta³ych uniwersalnych, takich jak liczba W. Biolog Robert May wyrós³ w jednym spo³eczeñstwie wyspiarskim - w Australii - a ¿yje w drugim: w Wielkiej Brytanii, gdzie jest obecnie g³ównym doradc± rz±du do spraw nauki. May bada³ wiele systemów ekologicznych, miêdzy innymi zachowanie populacji ryb, czym zaj±³ siê, gdy mieszka³ wcale nie na wyspie, lecz w Princeton, w stanie New Jersey.

83. Presentations
Contract Signing R. Chadha, J. mitchell, A. Scedrov, V. Shmatikov pdf ; Computationin a Distributed Information Market J. feigenbaum, L. Fortnow, D
http://www.cis.upenn.edu/group/spyce/presentations.html
Presentations
  • Project Overview - pdf
    Project Review Board
      Overview - Andre Scedrov [ pdf Network Architecture Research - Jonathan M. Smith [ pdf Approximation and Collusion in Multicast Cost Sharing - Joan Feigenbaum [ pdf Reliable MIX Cascade Networks via Reputation - Paul Syverson [ pdf

    Project Review Board
      Overview - Andre Scedrov [ pdf Market-Based Computation
        Introduction - Joan Feigenbaum [ pdf A BGP-based Mechanism for Lowest-Cost Routing - Rahul Sami [ pdf Distributed Mechanism Design and Computer Security - Vanessa Teague [ pdf
      Security
        Introduction - Pat Lincoln [ pdf A Formal Analysis of Some Properties of Kerberos 5 Using MSR - Aaron Jaggard [ pdf Secrecy in Multi-Agent Systems: A Knowledge-Based Approach - Kevin O'Neill [ pdf ]
      Networks
        Introduction - John Mitchell [ pdf On the Sensitivity of Network Simulation to Topology - Kostas G. Anagnostakis [ pdf pdf

      September 2002 - Project Review Board
        Introduction and project overview - Andre Scedrov [ pdf Privacy and anonymity
          Introduction - Paul Syverson, NRL [ pdf Fighting Spam May Be Easier Than You Think - Cynthia Dwork, Microsoft [

84. Meeting Minutes April 2002
(Moved by A. mitchell, seconded by T. feigenbaum, carried.). 7. Adjournment.Motion to adjourn (Moved by R. Berman, seconded by A. mitchell, carried.).
http://www.highered.nysed.gov/tcert/resteachers/minutes/April02minutes.html
State Professional Standards and Practices Board for Teaching Meeting Minutes Location: State Education Department Albany, New York Present: David A. Caputo, co-chair Selina A. Ahoklui Janet A. Ahola Patrick Allen Richard A. Berman Ernest Clayton Vivian V. Demers-Jagoda Theresa R. DiPasquale Todd R. Feigenbaum Alison C. Hyde Gerald M. Mager Sally Mechur Nicholas M. Michelli Anne Mitchell Eva M. Mroczka Maria Neira Lucretia F. Pannozzo Marilyn O. Pirkle Dawn Santiago-Marullo Patricia M. Squicciarini Nona Weekes Absent and excused: Jean B. Rose, co-chair Mary R. Cannie Thomas D. Gillett Hubert Keen Luis A. Ramirez Tarry Shipley Staff present: Charles C. Mackey Nancy Taylor Baumes Nancy Brennan APRIL 18, 2002 1. Call To Order Day One of the meeting was called to order by Maria Neira, chair pro tem, at 11:44 a.m. 2. Subcommittee Reports Higher Education Subcommittee – Jerry Mager reported in the chair’s absence. The subcommittee met on April 18, prior to the full board meeting. The subcommittee discussed the Regents Accreditation process and received an update on the TEAC accreditation process. Professional Practices Subcommittee – Lucretia Pannozzo reported that the subcommittee met on April 18, prior to the full board meeting. The subcommittee reviewed the Middle Level Education Plan, alternative certification, and the Code of Ethics draft. The subcommittee also reviewed Part 83 cases.

85. Feigenbaum Portraits
JOC/EFR August 2001 The URL of this page is © Copyright information. http//wwwhistory.mcs.st-andrews.ac.uk/history/PictDisplay/feigenbaum.html.
http://www-gap.dcs.st-and.ac.uk/~history/PictDisplay/Feigenbaum.html
Mitchell Feigenbaum
JOC/EFR August 2001 The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Feigenbaum.html

86. National Academy Of Sciences
Dynes, Robert C. Eastman, Dean E. Edwards, Sam. Ehrlich, Gert. feigenbaum, MitchellJ. Fisk, Zachary. Fleury, Paul A. Fowler, Alan B. Friedel, Jacques. Geballe, TH.
http://www4.nationalacademies.org/nas/naspub.nsf/urllinks/$$Section33?OpenDocume

87. Citations: The Keynote Trust Management System - Blaze, Feigenbaum, Ioannidis, K
M. Blaze, J. feigenbaum, , J. Ioannidis, and A.D. Keromytis. The keynote trust management system. Work in Progress, June 1998. Work in Progress, June 1998.Datalog with Constraints A Foundation
http://citeseer.nj.nec.com/context/56898/0
39 citations found. Retrieving documents...
M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust Management System , Version 2. IETF Request for Comments 2704, Available at http://www.ietf. org/rfc/rfc2704.txt, 1999.
Home/Search
Document Not in Database Summary Related Articles Check
This paper is cited in the following contexts: DisCo: A Distribution Infrastructure for Securely.. - Freudenthal.. (2001) (Correct) ....that enable secure use of applications in partly trusted environments. There are several aspects of this problem ranging from service discovery protocols [19] establishing secure connections between clients and servers [14, 8, 20, 4] to various access control [17] and trust management approaches , to mechanisms that protect an execution host by sandboxing potentially malicious application components. Rather than discuss how DisCo relates to each of these technologies, we restrict our attention to three broad categories of approaches: distributed component technologies such as J2EE ....
M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.

88. Unfolding Processes, Emergent Phenomena And Numbers' Structural Legacy - Mitchel
Topic Structure Principles and Applications in the Sciences and Music. ProfessorMitchell feigenbaum (Theoretical Physics, Rockefeller University).
http://www.connectedglobe.com/tbrf/webinteraction1/journal0101.html
Purposes
History
Symposia
Journal
Trustees
Membership
Tureck
Email
Bookshop

INTERACTION, Volume I
Date of publication: 15th April, 1997 Proceedings of the First International Symposium, Oxford, December 1995 Topic: Structure: Principles and Applications in the Sciences and Music
Professor Mitchell Feigenbaum
(Theoretical Physics, Rockefeller University)
Unfolding Processes, Emergent Phenomena and Numbers' Structural Legacy "It is a pleasure to be here. As I was walking outside and smoking, I noticed that there is a motto on the building. The motto says "Get knowledge, get riches but with all thy gettings get understanding". Basically that is what I will try to talk about. The subject of physics concerns itself with things that are characterized by order, regularity and invariance. These are almost the same words, and I will try to address as I go along different aspects of that. do with nature. You probably know that Pythagoreans took that relation very seriously and regarded nature as coequal to number. Moreover, nature was regarded as a discretion, in the sense that it was discrete, built out of pieces, so to speak numbers. It is hard to know what these things mean, one has lost too many references over the millennia. You probably know that in general we don't believe that anymore, that is, we don't believe in general that the world is discrete. That doesn't mean we can't entertain the possibility that it is. The notion (of convention) of a continuum makes sense when one thinks of Zeno's paradoxes, which are paradoxes against the idea of the world being discrete, but rather needing a continuum for its description.

89. Exploring The Feigenbaum Fractal
What is the logistic equation? The logistic equation is the formula MitchellFeigenbaum mainly worked upon developing the theory behind these fractals.
http://www.stud.ntnu.no/~berland/math/feigenbaumold/explore.html
Exploring the Feigenbaum fractal
This page is not finished yet, but will contain the following topics.
What is the logistic equation?
The logistic equation is the formula Mitchell Feigenbaum mainly worked upon developing the theory behind these fractals. The formula is meant to describe population.
f(x) = a * x * (1 - x)
A simple model of population over time is a proportional relationship to the last year. Say we had x animals last year. This year we should have a*x animals. But this does not apply to the real nature. A better description would be to include a factor dependant on how much room there is left, and let x express the ratio of fullness in the area (from to 1). Then the 1-x factor is added, so that if the area is almost full, the population will not increase beneath the upper limit. Expanding the logistic equation, we get:

90. CHAPITRE 4 : LA CONSTANTE DE FEIGENBAUM

http://josephv.test.free.fr/fractal/feigenbaum/FEIGENBAUM.html
CHAPITRE 4 : LA CONSTANTE UNIVERSELLE DE FEIGENBAUM FICHIER MAPLE CORRESPONDANT : FEIGENBAUM.MWS A ] Les bifurcations de Feigenbaum Comme on l'a vu dans le chapitre 1 , l'itérateur quadratique possède un attracteur qui dépend de . Pour tenter de visualiser les variations de cet attracteur en fonction du paramètre , on peut utiliser la procédure feigenbaum , qui admet trois arguments : début et fin sont les bornes respectivement inférieure et supérieure de l'intervalle des paramètres que l'on veut visualiser. pas est la distance que l'on prend entre deux points consécutifs de l'intervalle considéré. Plus l'intervalle est étroit, plus on a intérêt à choisir pas petit, mais il faut naturellement tenir compte de la vitesse et surtout de la mémoire de la machine. On pourra aussi modifier le test d'arrêt de compteurs de boucle k au sein de la procédure. Dans un premier temps, feigenbaum(1,4,pas) , où pas est à définir (par exemple 0.01), permet de visualiser les variations générales. On obtient ce qu'on appelle le diagramme de Feigenbaum Comme on l'a vu dans le chapitre 1 , l'attracteur est d'abord formé d'un unique point, qui est le point fixe attractif de l'itérateur. Puis apparaissent successivement les cycles de longueur 2, 4, 8, ..., pour des valeurs successives des paramètres qu'une utilisation patiente et minutieuse de la procédure

91. Biografisk Register
Translate this page 365-300 f.Kr.) Euler, Leonhard (1707-83) Faltings, Gerd (1954-) feigenbaum, MitchellJ. (1943-) Feit, Walter Fermat, Pierre de (1601-65) Ferrari, Ludovico (1522
http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm
Biografisk register
Matematikerne er ordnet alfabetisk på bakgrunn av etternavn. Linker angir at personen har en egen artikkel her. Fødsels- og dødsår oppgis der dette har vært tilgjengelig.
Abel, Niels Henrik
Abu Kamil (ca. 850-930)
Ackermann, Wilhelm (1896-1962)
Adelard fra Bath (1075-1160)
Agnesi, Maria G. (1718-99)
al-Karaji (rundt 1000)
al-Khwarizmi, Abu Abd-Allah Ibn Musa (ca. 790-850)
Anaximander (610-547 f.Kr.)
Apollonis fra Perga (ca. 262-190 f.Kr.)
Appel, Kenneth
Archytas fra Taras (ca. 428-350 f.Kr.) Argand, Jean Robert (1768-1822) Aristoteles (384-322 f.Kr.) Arkimedes (287-212 f.Kr.) Arnauld, Antoine (1612-94) Aryabhata (476-550) Aschbacher, Michael Babbage, Charles (1792-1871) Bachmann, Paul Gustav (1837-1920) Bacon, Francis (1561-1626) Baker, Alan (1939-) Ball, Walter W. R. (1892-1945) Banach, Stéfan (1892-1945) Banneker, Benjamin Berkeley, George (1658-1753) Bernoulli, Jacques (1654-1705) Bernoulli, Jean (1667-1748) Bernstein, Felix (1878-1956) Bertrand, Joseph Louis Francois (1822-1900) Bharati Krsna Tirthaji, Sri (1884-1960)

92. Stanford Computer Forum - Faculty Profile - Edward Feigenbaum

http://forum.stanford.edu/profile/feigenbaum.html
Home Search Directory
- Regular Faculty
...
Faculty Profile
Faculty Member... Alex Aiken Serafim Batzoglou Dan Boneh David Cheriton William J. Dally Giovanni De Micheli David Dill Dawson Engler Ron Fedkiw Edward Feigenbaum Richard Fikes Mike Flynn Armando Fox Hector Garcia-Molina Mike Genesereth Bernd Girod Gene H. Golub Leonidas J. Guibas Patrick Hanrahan John Hennessy Mark Horowitz Oussama Khatib Don Knuth Daphne Koller Christos Kozyrakis Monica Lam Jean-Claude Latombe Marc Levoy David Luckham Zohar Manna Chris Manning Teresa Meng John McCarthy Edward McCluskey Nick McKeown John Mitchell Rajeev Motwani Andrew Ng Nils Nilsson Kunle Olukotun Serge Plotkin Balaji Prabhakar Vaughan Pratt Eric Roberts Mendel Rosenblum Kenneth Salisbury Russ Shackelford Yoav Shoham Fouad Tobagi Sebastian Thrun Jeff Ullman Jennifer Widom Gio Wiederhold Terry Winograd
Research Areas
Select Area... Information Systems Systems/Ubiquitous Computing Computation Architecture Interaction Infrastructure Representation Computation Speech Game Theoretic Methods Compilers Physical Modeling Computing Operating Systems /Dependability Edward Feigenbaum Kumagai Professor of Computer Science Emeritus
Gates Bldg., Rm. 220

93. Randy Braith's Home Page
Exercise following heart transplantation. Sports Medicine 2000;30(3)171192. FeigenbaumM, Welsch M, mitchell M, Vincent K, Pepine C, Pollock M, Braith RW.
http://www.hhp.ufl.edu/ess/FACULTY/rbraith/rbraith.htm

RANDY W. BRAITH, Associate Professor
Department of Exercise and Sport Sciences, and
Department of Medicine (Cardiology and Physiology)

EDUCATIONAL BACKGROUND
BS: Bemidji State University, MN., 1973 English
MS: St. Cloud State University, MN., 1984 Exercise Physiology/Biology
PhD: University of Florida, 1991 Exercise Physiology/Physiology
Post-Doc: University of Florida, 1994 Cardiology/Physiology
RESEARCH INTERESTS
de novo hypertension that is refractory to standard antihypertensive drugs. Dr. Braith pioneered the application of resistance training programs for heart transplant recipients to prevent glucocorticoid-induced osteoporosis. He and his students have also demonstrated, through biopsy techniques, that resistance exercise training reverses skeletal muscle myopathy in heart transplant recipients.
SELECTED PUBLICATIONS
Edwards DG, Schofield RS, Magyari PM, Nichols WW, Braith RW. Exercise training and the amplitude and timing of central aortic pressure wave reflection in coronary artery disease. Am J Hypertension 2004 (Accepted: in press).

94. The Adventures Of Mr. Gordo
childhood SA rabbit. According to BAPS member Nancy T., mitchell Feigenbaumis a physicist who studies chaos theory. There s something
http://www.channelingboards.com/Fanfiction/feigenbaumgallery.html
Feigenbaum Fred's stuffed bunny In AtS S5 Ep15, "Hole in the World", we were introduced to Feigenbaum, Fred's childhood SA rabbit. According to BAPS member Nancy T., "Mitchell Feigenbaum is a physicist who studies chaos
theory. There's something called the Feigenbaum fractal." This explains why little Fred calls her friend the 'Master of Chaos'. Meet Mr. Feigenbaum His girl, Fred, loved him very much. But one day, he disappeared...and Girl could not find him. It made her very sad. Did the Ee Vul Nawks bunny-nap him? Did Spike nab him for a little quality cuddling time? Is he stuck in the hole through the world? Or...did the one who replaced his Girl eat him?! We may never know.
Page 2
Back to the Adventures Legal Notice - "Buffy the Vampire Slayer" and "Angel" TM is

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 

free hit counter