Geometry.Net - the online learning center
Home  - Scientists - Faltings Gerd
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Faltings Gerd:     more books (16)
  1. Rational Points: Seminar Bonn/Wuppertal 1983/84 (Aspects of Mathematics)
  2. Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127) by Gerd Faltings, 1992-02-19
  3. Degeneration of Abelian Varieties (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics) by Gerd Faltings, Ching-Li Chai, 2010-11-02
  4. Leibnizpreisträger: Jürgen Habermas, Christiane Nüsslein-Volhard, Gerd Faltings, Gottfried-Wilhelm-Leibniz-Preis, Berthold Beitz (German Edition)
  5. Mitglied Der Nordrhein-Westfälischen Akademie Der Wissenschaften: Ilya Prigogine, Christiane Nüsslein-Volhard, Kurt Alder, Gerd Faltings (German Edition)
  6. Hochschullehrer (Bergische Universität Wuppertal): Gerd Faltings, Karl-Heinz Petzinka, Johannes Harder, Lew Sinowjewitsch Kopelew, Peter Dienel (German Edition)
  7. University of Wuppertal: University of Wuppertal Faculty, Walter Thiel, Gerd Faltings, Karl Albert
  8. Gerd Faltings Proves Mordell's Conjecture (1983): An entry from Gale's <i>Science and Its Times</i> by Brooke Coates, 2001
  9. Gerd Faltings: An entry from Gale's <i>Science and Its Times</i> by Adrienne Wilmoth Lerner, 2001
  10. Träger Der Fields-Medaille: Gerd Faltings, Alexander Grothendieck, Grigori Jakowlewitsch Perelman, Jean-Pierre Serre, Laurent Schwartz (German Edition)
  11. Rational points: Seminar Bonn / Wuppertal 1983/84 (Aspects of mathematics) by Gerd Faltings, 1986
  12. Inventiones Mathematicae: Vol. 159, Fasc. 3, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005
  13. Inventiones Mathematicae: Vol. 160, Fasc. 1, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005
  14. Inventiones Mathematicae: Vol. 159, Fasc. 2, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005

61. News Of Book
410.4,F19 ; 21 volume 1 faltings,gerd. ? Gromov, Mikhael. ? ?000050764
http://www.ism.ac.jp/~kshimizu/libbook/2002nov.htm

62. Avetisyan, Karen
Bismarckstr. 1 1/2. DE91054 Erlangen. GERMANY. conti@mi.uni-erlangen.de. faltings,gerd. Max-Planck Instituts für Mathematik. Vivatsgasse 7. 53111 Bonn. GERMANY.
http://www.math.uio.no/abel/participants.html
Avetisyan, Karen Yerevan State University ARMENIA avetkaren@ysu.am Gaiko, Valery Belarus State University BELARUS vlgk@cit.org.by Lemaire, Luc Universite Libre de Bruxelles CP 218 Campus Plaine Bd du Triomphe BE-1050 Bruxelles BELGIUM llemaire@ulb.ac.be Van den Bergh, Michel Limburgs Universitair Centrum Dept. WNI Universitaire Campus 3590 Diepenbeek BELGIUM vdbergh@luc.ac.be Van Oystaeyen, Fred BELGIUM francine.schoeters@ua.ac.be Vidunas, Raimundas Antwerp University Universiteitsplein 1 2610 Wilrijk BELGIUM vidunas@uia.ua.ac.be Esteves, Eduardo IMPA 12 Totman Drive, apt. 2 Woburn MA 01801 BRAZIL esteves@math.mit.edu Hefez, Abramo UFF BRAZIL hefez@mat.uff.br Vainsencher, Israel UFPE Departamento de Matematica UFPE Cidade Universitaria 50740-540 Recife BRASIL BRAZIL israel@dmat.ufpe.br Kapranov, Mikhail University of Toronto Department of Mathematics Toronto, Ontario M5S 3G3 CANADA kapranov@math.toronto.edu Andersen, Henning Haahr Aarhus University Matematisk Institut Aarhus Universitet DK 8000 Aarhus C DENMARK mathha@imf.au.dk Branner, Bodil Technical University of Denmark Department of Mathematics Building 303 DK-2800 Kongens Lyngby DENMARK B.Branner@mat.dtu.dk

63. Dan's PLANET MATHEMATICS
The contribution of faltings in the direction of the Mordell conjecture, especiallyfaltings, gerd Calculus on arithmetic surfaces, Ann. Math., II. Ser.
http://www.mathi.uni-heidelberg.de/~dan/Research/
MATHEMATICAL RESEARCH
  • Die kanonische Spur auf der Algebra der pseudodifferentialen Operatoren
    (English title: The canonical trace in the algebra of pseudodifferential operators), 1995, 6pp.
    A short preprint in German about the canonical trace introduced by Kontsevich and Vishik.

  • (English title: Higher arithmetic K-theory),
    Ph. D. thesis, Faculty of Mathematics and Informatics, University of Mannheim, November 1998.
    • Title: The canonical trace in the algebra of pseudodifferential operators, 1995, 6pp.
    • Language: German
      German title: Die kanonische Spur auf der Algebra der pseudodifferentialen Operatoren
    • You can choose one of the following files:
    • Abstract:
      This is a short preprint about some technical aspects connected to the canonical trace introduced by Kontsevich and Vishik in:
      [Kontsevich Maxim, Vishik Simeon: Determinants of elliptic PDO, 156pp, preprint.]
    The following link is the PostScript file of my Ph.D. thesis in the form it was officially presented to the Faculty of Mathematics and Informatics, University of Mannheim, Germany, in November 1998.
  • 64. Members Of The School Of Mathematics
    Translate this page FAKHRUDDIN, Najmuddin, 1995-96. FALKOVICH, Gregory, 1997-98, 2002-03. faltings,gerd, 1983-84, 1988-89, 1992-93. FAN, Chenteh, 1996-97. FAN, Ky, 1945-47.
    http://www.math.ias.edu/fnames.html
    FADDEEV, Lioudvig FADELL, Edward R. FAITH, Carl C. FAJARDO, Sergio FAKHRUDDIN, Najmuddin FALKOVICH, Gregory FALTINGS, Gerd FAN, Chenteh FAN, Ky FAN, Paul FARAN, James J., V FARELL, F. Thomas FARRELL, Orin J. FARRIS, Mark K. FATHI, Albert FATKULLIN, Ibrahim FAUNTLEROY, Amassa C. FAY, John D. FEARNLEY, Lawrence FEDER, Samuel S. FEDERER, Herbert FEEHAN, Paul FEFERMAN, Solomon FEICHTNER, Eva Maria FEINGOLD, Alex J. FEIT, Walter FEKETE, Michael FELDER, Giovanni FELDMAN, Jacob FENCHEL, Werner FERNÁNDEZ DEL BUSTO, Guillermo FERRETTI, Roberto FERRY, Steven C. FESENKO, Ivan FIALKOW, Aaron FIEDOROWICZ, Zbigniew FILLMORE, Jay P. FINE, Nathan J. FINKEL, Allan J. FINKELBERG, Michael FINN, Robert S. FINTUSHEL, Ronald A. FINZI, Arrigo FISCHER, Bernd FISCHER-COLBRIE, Doris H. FISHER, Daniel FLEISCHNER, Herbert FLEXNER, William W. FLICKER, Yuval Z. FLORES, Antonio I. FLOYD, Edwin E. FOLLAND, Gerald B. FOLNER, Erling FONTAINE, Jean-Marc FORD, Kevin FORMANEK, Edward FORSTER, Otto FOSCHI, Damiano FOURÈS, Léonce FOURÈS, Yvonne FOURNY, Etienne FOX, Ralph H. FRAME, James S. FRANCHI, Bruno

    65. FADDÉEV, D. - SOMINSKI, I.
    with SAS. faltings, gerd -CHAI Ch.L. Degeneration of Abelian Varieties.
    http://www.math.uvsq.fr/lama/CATALOGUE/F.html
    FADDEEV, L. D. Hamiltonian Methods in the theory of solitons FAISANT, Alain FAITH, C. FALCONER, K-J The geometry of fractal sets FALCONER, K. J. Techniques in Fractal geometry Foundations of Statistical Analysis and Applications with SAS FALTINGS, Gerd -CHAI Ch.L. Degeneration of Abelian Varieties FAN, X. - XIONG, Q.Y. - ZHENG, Y.L. A course in algebra FARGIER, Jean-Luc FARIS, W.G. FARKAS, H.M. Riemann surfaces Combinatoire et algorithmique pour Licence MAF FAY, J.D. FEAUVEAU, Jean-Christophe - AZIZ Belhouari FEDERER, H. Geometric Measure Theory FELL, J.M.G. FELLER William An introduction to Probability theory and its applications Vol 1 FELLER William An introduction to Probability theory and its applications Vol 2 FELSAGER, B. Geometry, particles and fields FENYO, S. - FREY, T. Modern mathematical methods in technology FERES, R. Dynamical systems and semisimple groups - An introduction FERGUSON, T.S Probability and mathematical statistics FERRANTE, J. - RACKOFF, C.W. FERRIER, J.P. FERRIER, J.P. - RABOIN, P. FIEDOROWICZ, Z. - PRIDDY, S. FISCHER, G.

    66. L. Adleman/M. Huang Primality Testing And Abelian Varieties Over
    1858 gerd faltings Die Vermutungen von Tate und Mordell. Jber. 1859 gerd faltingsEndlichkeitssaetze fuer abelsche Varietaeten ueber Zahlkoerpern. Inv. Math.
    http://felix.unife.it/Root/d-Mathematics/d-Number-theory/b-Arithmetic-algebraic-
    L. Adleman/M. Huang: Primality testing and abelian varieties over finite fields. SLN Math. 1512 (1992). 5375 G. Belyi: On Galois extensions of the maximal cyclotomic field. Math. USSR Izvestiya 14 (1980), 247-256. Massimo Bertolini/Giuseppe Canuto: La congettura di Shimura-Taniyama-Weil. Boll. UMI 10-A (1996), 213-247. This expository paper outlines the proof of the conjecture of Shimura-Taniyama-Weil for semistable elliptic curves by Wiles and illustrates some consequences of this work on Fermat's last theorem and the conjecture of Birch and Swinnerton-Dyer. 8336 Amnon Besser: Euler systems for higher-weight modular forms. Internet 1996, 6p. G. Billing/K. Mahler: On exceptional points on cubic curves. J. London Math. Soc. 15 (1940), 32-43. The authors show that on an elliptic curve defined over Q there don't exist rational points of order 11. 1990 S. Bloch: The proof of the Mordell conjecture. Math. Intell. 6/2 (1984), 41-47. Enrico Bombieri: The Mordell conjecture revisited. Annali di Pisa 17 (1990), 615-640. 3453 A. Brumer/O. McGuiness: The behaviour of the Mordell-Weil group of elliptic curves. Bull. AMS 23 (1990), 375-382. A. Buium: Differential algebra and diophantine geometry. Hermann 1994, 190p. 2-705-66226-X. FFR 130. "The book develops differential algebraic geometry, a geometry in which local theory is provided by classical differential algebra ... This theory has intriguing applications to diophantine geometry: the author gives new proofs of the conjectures of Lang and Mordell over function fields of characteristic zero." (EMS Newsletter). Fabrizio Catanese (ed.): Arithmetic geometry. Symp. Math. 37 (1997), 300p. 2681 J.S. Chahal: Topics in number theory. Plenum Press 1988. 7806 Barry Cipra: Fermat prover points to next challenges. Science 22 March 1996, 1668-1669. 3277 John Coates: Elliptic curves with complex multiplication and Iwasawa theory. Bull. London Math.Soc. 23 (1991), 321-350. R. Coleman: Effective Chabauty. Duke Math. J. 52 (1985), 765-770. Very sharp upper estimates for the number of rational points in special cases. 5678 Jean-Louis Colliot-Thelene/Dimitri Kanevsky/Jean-Jacques Sansuc: Arithmetique des surfaces cubiques diagonales. 1938 WŸstholz, 1-108. 6324 Jean-Louis Colliot-Thelene/Kazuya Kato/Paul Vojta (ed.): Arithmetic algebraic geometry. SLN Math. 1553 (1993), 220p. 3-540-57110-8. DM 82. 1744 Gary Cornell/Joseph Silverman (ed.): Arithmetic geometry. Springer 1986. Standard reference. Gary Cornell/Joseph Silverman/Glenn Stevens (ed.): Modular forms and Fermat's last theorem. Springer 1997, 3-540-94609-8. $50. 3445 Pierre Deligne: Preuve des conjectures de Tate et de Shafarevich. Asterisque 121/122 (1985, 25-41. B. Edixhoven/J.-H. Evertse: Diophantine approximation and abelian varieties. SLN Math. 1566 (1993). 3-540-57528-6. DM 34. Fabiano/G. Pucci/A. Yger: Effective Nullstellensatz and geometric degree for zero-dimensional ideals. Acta Arithm. 78 (1996), 165-187. 1858 Gerd Faltings: Die Vermutungen von Tate und Mordell. Jber. DMV 86 (1984), 1-13. 1859 Gerd Faltings: Endlichkeitssaetze fuer abelsche Varietaeten ueber Zahlkoerpern. Inv. Math. 73 (1983), 349-366. Gerd Faltings: Lectures on the arithmetic Riemann-Roch theorem. Annals of Mathematics Studies 1993. Paperback ISBN 0-691-02544-4. $15. The arithmetic Riemann-Roch theorem has been shown recently by Bismut, Gillet and Soule'. The proof mixes algebra, arithmetic and analysis. "This book contains very deep and quite recent results. ... In contrast to the very interesting contents the style of presentation seems rather problematica to me ... There is more or less no motivation for definitions and results, and it is also not indicated what the results could be used for ... " (A. Cap). 4784 Gerd Faltings: Recent progress in diophantine geometry. 4727 Casacuberta/Castellet, 78-86. Gerd Faltings: Calculus on arithmetic surfaces. Annals Math. 118 (1984), 387-424. 1844 Gerd Faltings/Gisbert Wuestholz (ed.): Rational points. Vieweg 1986. 3604 Eberhard Freitag/Reinhardt Kiel: Etale cohomology and the Weil conjecture. Springer 1988. Gerhard Frey: Links between solutions of A-B=C and elliptic curves. SLN Math. 1380 (1989), 31-62. Gerhard Frey: Rationale Punkte auf Fermatkurven und getwisteten Modulkurven. J. reine u. angew. Math. 331 (1982), 185-191. Gerhard Frey: Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Saraviensis 1 (1986), 1-40. Gerhard Frey: On Artin's conjecture for odd 2-dimensional representations. SLN Math. 1585 (1994). 3-540-58387-4. 3716 G. van der Geer/F. Oort/J. Steenbrink (ed.): Arithmetic algebraic geometry. Birkhaeuser 1991. Fernando Gouvea/Noriko Yui: Arithmetic of diagonal hypersurfaces over finite fields. Cambridge UP 1995, 180p. 0-521-49834-1. $33. This book deals with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. Gu''nter Harder: Eisensteinkohomologie und die Konstruktion gemischter Motive. SLN Math. 1562 (1993), 180p. 3-540-57408-5. 9663 Gu''nter Harder: Wittvektoren. Jber. DMV 99 (1997), 18-48. Yves Hellegouarch: Courbes elliptiques et quations de Fermat. These, Besancon 1972 (?). Yves Hellegouarch: Invitation aux mathematiques de Fermat-Wiles. Masson 1997, 400p. ISBN 2-225-83008-8 (pb) (or ISSN 1269-7842). 5363 John Horgan: Fermat's MacGuffin. Scientific American September 1993, 14-15. In June 1993 Andrew Wiles proposed a proof of Fermat's last theorem, although the complete paper, 200 pages long, has still to be examined in detail, most experts believe the proof should be true. For seven years, after that Frey and Ribet had reduced the problem to a (difficult!) problem about elliptic curves, Wiles virtually stopped writing papers, attending conferences or even reading anything unrelated to his goal. 4732 Wilfred Hulsbergen: Conjectures in arithmetic algebraic geometry. Vieweg 1992. 2718 Horst Knoerrer a.o.: Arithmetik und Geometrie. Birkhaeuser 1986. 1850 Neal Koblitz (ed.): Number theory related to Fermat's last theorem. Birkhaeuser 1982. 2054 V. Kolyvagin: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. MPI Mathematik Bonn 69/1990. 1848 Hanspeter Kraft: Algebraische Kurven und diophantische Gleichungen. 1847 Borho, 93-114. 3450 Gerhard Kramarz: All congruent number less than 2000. Math. Ann. 273 (1986), 337-340. 1885 Serge Lang: Integral points on curves. Publ. IHES 6 (1960), 27-43. Serge Lang: Higher dimensional diophantine problems. Bull. AMS 80 (1974), 779-788. 1889 Serge Lang: Hyperbolic and diophantine analysis. Bull. AMS 14 (1986), 159-205. 5207 Serge Lang: Vojta's conjecture. SLN Math. 1111 (1985), 407-419. 2015 Serge Lang: Fundamentals of diophantine geometry. Springer 1983. Serge Lang: Number theory III. Diophantine geometry. Springer 1991, 300p. DM 128. "Das vorliegende Buch gibt einen hervorragenden und geschmackvollen Ueberblick ueber die diophantische Geometrie." (G. Wuestholz). 4652 Serge Lang: Introduction to Arakelov theory. Springer 1988. 3607 Serge Lang: Elliptic curves - diophantine analysis. Springer 1978. Michael Larsen: Unitary groups and l-adic representations. Thesis. Princeton UP 1988. Michael Larsen: Arthmetic compactification of some Shimura surfaces. See Zentralblatt 760 (1993), 57. Qing Liu: Algebraic geometry and arithmetic curves. Oxford UP 2002, 460p. Pds 40. 3427 David Masser: Counting points of small height on elliptic curves. Bull. Soc.Math. France 117 (1989), 247-265. 3428 David Masser/Gisbert Wuestholz: Estimating isogenies on elliptic curves. Inv. Math. 100 (1990), 1-24. 3093 Barry Mazur: Number theory as gadfly. Am. Math. Monthly 98 (1991), 593-610. Predicts the key role of Taniyama's conjecture in the proof of Fermat's theorem. At the same time an introduction to Riemann surfaces for beginners! Very beautiful. 4935 Barry Mazur: Arithmetic on curves. Bull. AMS 14 (1986), 207-259. Barry Mazur: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), 33-186. Barry Mazur: Rational isogenies of prime degree. Inv. Math. 44 (1978), 129-162. Barry Mazur/Andrew Wiles: Class fields of abelian extensions of Q. Inv. Math. 76 (1984), 179-330. J.-F. Mestre: Construction of an elliptic curve of rank ³ 12. Comptes Rendus 295 (1982), 643-644. J. Mestre: Formules explicites et minorations de conducteurs de varietes algebriques. Comp. Math. circa 58 (1986), 209-232. On the rank of the group of rational points of an elliptic curve. Carlos Moreno: Algebraic curves over finite fields. Cambridge UP 1990, 270p. 0-521-34252-x. Pds. 30. Should be somewhat difficult to read. J. Oesterle': Nouvelles approches du theoreme de Fermat. Asterisque 161-162 (1988), 165-186. Explains the link between Fermat's problem and the associated elliptic curve introduced by Hellegouarch and Frey. The proofs make essential use of the arithmetic theory of modular forms. A. Parshin: Algebraic curves over function fields I. Izv. Ak. Nauk SSSR 32 (1968), 1145-1170. A. Parshin: Quelques conjectures de finitude en geometrie diophantienne. Actes Congr. Int. Math. 1 (1970), 467-471. E. Peyre/Y. Tschinkel (ed.): Rational points on algebraic varieties. Birkha''user 2001, 450p. Eur 85. 4888 Christoph Poeppe: Der Beweis der Fermatschen Vermutung. Spektrum 1993/8, 14-16. Alf van der Poorten: Notes on Fermat's last theorem. Wiley 1996, 220p. 0-471-06261-8. Paulo Ribenboim: Fermat's last theorem for amateurs. Springer 1999. 3-540-98508-5. $40. Kenneth Ribet: On modular representations of Gal(A/Q) arising from modular forms. Inv. Math. 100 (1990), 431-476. [A=algebraic numbers.] Kenneth Ribet: Twists of modular forms and endomorphisms of abelian varieties. Math. Annalen 253 (1980), 43-62. Kenneth Ribet: From the Taniyama-Shimura conjecture to Fermat's last theorem. Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. 5641 Kenneth Ribet: Wiles proves Taniyama's conjecture; Fermat's last theorem follows. Notices AMS 40 (1993), 575-576. 7178 Kenneth Ribet: Galois representations and modular forms. Bull. AMS 32 (1995), 375-402. 8338 Karl Rubin: Modularity of mod 5 representations. Internet 1995, 9p. An elliptic curve defined over Q and semistable at 3 and 5 is modular. 7768 Karl Rubin: Euler systems and exact formulas in number theory. Jber. DMV 98 (1996), 30-39. 3449 P. Satge': Un analogue du calcul de Heegner. Inv.Math. 87 (1987), 425-439. 1962 S. Schanuel: Heights in number fields. Bull. SMF 107 (1979), 433-449. 4801 Claus-Guenther Schmidt: Die Fermat-Kurve und ihre Jacobi-Mannigfaltigkeit.2718 Knoerrer, 9-28. 3594 Claus-Guenther Schmidt: Arithmetik abelscher Varietaeten mit komplexer Multiplikation. SLN Math. 1082 (1984). 3430 R. Schoof: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483-494. Jean-Pierre Serre: Lectures on the Mordell-Weil theorem. Vieweg 1989, 220p. DM 52. Jean-Pierre Serre: Proprietes galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15 (1972), 259-331. Jean-Pierre Serre: Sur les representations modulaires de degre' ? de Gal(A/Q). Duke Math. J. 54 (1987), 179-230. [A=algebraic numbers.] Goro Shimura: Correspondances modulaires et les fonctions zeta de courbes algebriques. J. Math. Soc. Japan 10 (1958), 1-28. Goro Shimura: On the factors of the Jacobian variety of a modular function field. J. Math. Soc. Japan 25 (1973), 523-544. Goro Shimura: Class fields over real quadratic fields and Hecke operators. Annals Math. 95 (1972), 130-190. Goro Shimura: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J. 43 (1971), 199-208. 3150 T. Shioda: Mordell-Weil lattices and sphere packings. Am. J. Math. 113 (1991), 931-948. 1919 Joseph Silverman: Lower bound for the canonical height on elliptic curves. Duke Math. J. 48 (1981), 633-648. 11731 Simon Singh/Kenneth Ribet: Die Lo''sung des Fermatschen Ra''tsels. Spektrum 1998/1, 96-103. C. Soule'/D. Abramovich/J.-F. Burnol/J. Kramer: Lectures on Arakelov geometry. Cambridge UP, 190p. 0-521-41669-8. Pds. 30. S. Stepanov: Arithmetic of algebraic curves. Consultants Bureau 1994. 0-306-11036-9. G. Stevens: Stickelberger elements and modular parametrizations of elliptic curves. Inv. Math. 98 (1989), 75-106. On uniformization of elliptic curves by modular curves. 3560 N. Suwa: Fermat motives and the Artin-Tate formula II. Proc.Japan Ac. 67A (1991), 135-138. 8706 Peter Swinnerton-Dyer: Diophantine equations - the geometric approach. Jber. DMV 98 (1996), 146-164. 3444 L. Szpiro: La conjecture de Mordell. Asterisque 121/122 (1985), 83-103. 3322 L. Szpiro (ed.): Seminaire sur les pinceaux arithmetique: la conjecture de Mordell. Asterisque 127 (1985). J. Tunnell: Artin's conjecture for representations of octahedral type. Bull. AMS 5 (1981), 173-175. V. Voevodsky/G. Shabat: Equilateral triangulations of Riemann surfaces and curves over algebraic number fields. Circa 1990. 1737 Paul Vojta: Diophantine approximations and value distribution theory. SLN Math. 1239 (1987). Paul van Wamelen: On the CM character of the curves y^2=x^q-1. J. Number Theory 64 (1997), 59-83. Andre' Weil: L'arithmetique sur les courbes algebriques. Acta Math. 52 (1928), 281-315. Andre' Weil: The field of definition of a variety. Am. J. Math. 78 (1956), 509-524. Andrew Wiles: Modular elliptic curves and Fermat's last theorem. Ann. Math. 141 (1995), 443-551. 1938 Gisbert Wuestholz (ed.): Diophantine approximation and transcendence theory. SLN Math. 1290 (1987). J. Zarhin: Isogenies of abelian varieties over fields of finite characteristics. Mat. Sb. 95/137/3 (1974), 451-461. 1853 Horst Gu''nter Zimmer: Zur Arithmetik der elliptischen Kurven. Grazer Berichte 271 (1986), 110p.

    67. Per Un Confronto Elenchiamo Le 18 Sezioni In Cui  Stata Divisa
    Translate this page 1946) Daniel Quillen (1940) 1982 Alain Connes (1947) William Thurston (1946) Shing-TungYau (1949) 1986 Simon Donaldson (1957) gerd faltings (1954) Michael
    http://felix.unife.it/Root/d-Mathematics/d-Guida-alla-matematica/t-I-matematici
    Per un confronto elenchiamo le 18 sezioni in cui  stata divisa la matematica in occasione dell'ultimo Congresso Internazionale di Matematica a Kyoto, nell'agosto 1990: Logica matematica e fondamenti Algebra Teoria dei numeri Geometria Topologia Geometria algebrica Gruppi di Lie e rappresentazioni Analisi reale e complessa Algebre di operatori e analisi funzionale Teoria della probabilitˆ e statistica matematica Equazioni differenziali parziali Equazioni differenziali ordinarie e sistemi dinamici Fisica matematica Calcolo combinatorio Aspetti matematici dell'informatica Metodi computazionali Applicazioni della matematica alle altre scienze Storia, didattica, natura della matematica. Pianta provvisoria della biblioteca /* SOSTITUIRE DOPO LA STAMPA CON LA PIANTA */ Medaglie Fields Non esiste il premio Nobel per la matematica, perchŽ Alfred Nobel (1833-1896) o non aveva abbastanza soldi, o ci ha semplicemente dimenticati, o pensava che la matematica fosse una scienza meno importante delle altre, o perchŽ attristato da dolori sentimentali causatigli da un matematico, o forse per tutte queste cause insieme, non ha previsto il premio Nobel per la matematica. Dal 1936 esiste invece la medaglia Fields, che viene conferita ogni 4 anni (con pause dovute a eventuali guerre mondiali) in occasione dei Congressi Matematici Internazionali. Diamo l'elenco delle medaglie Fields finora assegnate: 1936 Lars Ahlfors (1907) Jesse Douglas (1897) 1950 Laurent Schwartz (1915) Atle Selberg (1917) 1954 Kunihiko Kodaira (1915) Jean-Pierre Serre (1926) 1958 Klaus Roth (1925) RenŽ Thom (1923) 1962 Lars Hšrmander (1931) John Milnor (1962) 1966 Michael Atiyah (1929) Paul Joseph Cohen (1934) Alexandre Grothendieck (1928) Stephen Smale (1930) 1970 Alan Baker (1939) Heisuke Hironaka (1931) Sergei Novikov (1938) John Thompson (1932) 1974 Enrico Bombieri (1940) David Mumford (1937) 1978 Pierre Deligne (1944) Charles Fefferman (1949) Gregori Margulis (1946) Daniel Quillen (1940) 1982 Alain Connes (1947) William Thurston (1946) Shing-Tung Yau (1949) 1986 Simon Donaldson (1957) Gerd Faltings (1954) Michael Freedman (1951) 1990 Vladimir Drinfeld (1954) Vaughan Jones (1952) Shigefumi Mori (1951) Edward Witten (1951) Ordinati per discipline matematiche si distribuiscono come segue, va per˜ detto che molti di questi matematici hanno lavorato anche in campi molto diversi da quello in cui hanno preso la medaglia Fields. Questa medaglia viene, per un accordo che finora non  mai stato violato, conferita soltanto a matematici di etˆ inferiore ai 40 anni (nell'elenco precedente la data di nascita di ciascuno  indicata tra parentesi). Algebra (2): Thompson, Quillen. Algebre di operatori (2): Connes, Jones. Analisi (5): Ahlfors, Douglas, Schwartz, Hšrmander, Fefferman. Geometria algebrica (6): Grothendieck, Hironaka, Mumford, Deligne, Faltings, Mori. Geometria differenziale e complessa (4): Kodaira, Atiyah, Margulis, Yau. Geometria differenziale in fisica matematica (2): Drinfeld, Witten. Logica (1): Cohen. Teoria dei numeri (4): Selberg, Roth, Baker, Bombieri. Topologia (8): Serre, Thom, Milnor, Smale, Novikov, Thurston, Donaldson, Freedman. Dal 1983 esiste anche il premio Rolf Nevanlinna, che viene conferito nella stessa occasione a uno scienziato che ha dato i migliori contributi nel campo della matematica applicata in informatica. E' stato vinto nel 1982 da R.ÊTarjan, nel 1986 da L.ÊValiant. Nel 1990 questo premio  andato ad A.ÊRazborov, di Mosca, allora 27 anni, per lavori nella teoria della complessitˆ degli algoritmi per funzioni booleane. Forse la pi famosa congettura non risolta della matematica  la congettura di Fermat (1601-1665), che dice che non esistono analoghi di grado superiore delle triple pitagoree, cioŽ non esistono numeri naturali x,y,z tutti diversi da zero, tale che xn + yn = zn, se n  un numero naturale maggiore di 2. Il risultato per cui Gerd Faltings ha ricevuto la medaglia Fields implica che, per ogni fissato n, il numero delle soluzioni x,y,z, se ne esistono,  comunque finito. Questo risultato, ottenuto con metodi avanzatissimi della geometria algebrica,  forse il pi sensazionale tra quelli che i vincitori delle medaglie Fields possono vantare. Le tecniche utilizzate da Faltings sono dovute al francese Alexandre Grothendieck, altra medaglia Fields, che negli anni 1960-1970 ha rivoluzionato la geometria algebrica con una massiccia introduzione di algebra commutativa e un sistematico uso della teoria delle categorie. Di ogni Congresso Matematico Internazionale, organizzato dall'Unione Matematica Internazionale, vengono pubblicati gli atti, che spesso contengono i testi di conferenze estremamente interessanti, perchŽ frequentemente impulsi a nuovi campi di ricerca, ma purtroppo da molto tempo non vengono pi acquistati dalla nostra biblioteca. Abbiamo invece un volume che racconta, naturalmente in forma molto breve, la storia di questi congressi fino al 1986: D. ALBERS/G. ALEXANDERSON/C. REID: International Mathematical Congresses. Springer 1987. Recentemente  stata fondata l'Unione Matematica Europea, di cui  presidente il tedesco Friedrich Hirzebruch, un geometra algebrico, nato nel 1927, vicepresidente  Alessandro Figˆ-Talamanca, un analista armonico, nato nel 1938, che  anche presidente dell'Unione Matematica Italiana (UMI). Esiste anche l'Associazione per le Donne in Matematica (Association for Women in Mathematics), un problema delicato di cui parleremo pi tardi. Premi Wolf Il dottor Wolf (1887-1981), un chimico tedesco emigrato in Cuba prima della prima guerra mondiale, amico di Fidel Castro, vissuto in Israele dal 1973, fond˜ con 10 milioni di dollari la Wolf Foundation, che ogni anno conferisce premi in agricultura, chimica, matematica, medicina e fisica. I vincitori di questo premio sono scienziati molto famosi: I premi in matematica sono stati assegnati finora a Izrail Gelfand, Carl Siegel (1896-1981), Jean Leray, AndrŽ Weil, Henri Cartan, Andrei Kolmogorov (1903-1987), Lars Ahlfors, Oscar Zariski (1899-1986), Hassler Whitney, Mark Krein, Shiing-shen Chern, Paul Erdšs, Kunihiko Kodaira, Hans Lewy, Samuel Eilenberg, Atle Selberg, Kiyoshi Ito, Peter Lax, Friedrich Hirzebruch, Lars Hšrmander, nomi che ogni matematico dovrebbe conoscere. La lista arriva fino al 1988, perchŽ non abbiamo trovato altre informazioni. Esiste un altro premio importante, il premio Crafoord, che viene conferito ogni 7 anni dall'accademia reale svedese in alcuni campi per cui non esiste il premio Nobel: astronomia, biologia, geofisica, matematica. Tra i matematici lo hanno ottenuto Louis Nirenberg, Vladimir Arnold, Pierre Deligne, Alexandre Grothendieck. Grothendieck poi non lo ha accettato, dicendo tra l'altro che non ritiene che abbia senso conferire questi premi a scienziati che in fondo non ne hanno pi bisogno. Comunque non tutti la pensano cos“. Per noi, come pubblico, questi premi sono comodi, perchŽ impariamo a conoscere i nomi pi prestigiosi della matematica mondiale. D. ALBERS/G. ALEXANDERSON (c.): Mathematical people. BirkhŠuser 1985. Volete conoscere le idee e la vita giornaliera di alcuni dei pi famosi matematici degli ultimi decenni? Qui trovate lunghe interviste con Garrett Birkhoff, David Blackwell, Shiing-shen Chern, John H.ÊConway, H.ÊCoxeter, Persi Diaconis, Paul Erdšs, Martin Gardner (quello dei giochi), Ronald Graham, Paul Halmos, Peter Hilton, John Kemeny, Morris Kline, Donald Knuth (quello del TEX), Benoit Mandelbrot (che sostiene di aver inventato i frattali), Henry Pollack, George Polya (1887-1985), Mina Rees, Constance Reid (la biografa di Courant e di Hilbert), Herbert Robbins (del Courant/Robbins), Raymond Smullyan, Olga Taussky-Todd, Albert Tucker, Stanislaw Ulam (1909-1984) con moltissime fotografie e dati biografici. Opere generali e di consultazione A Manuali, trattati di matematica generale M Monografie MB Bibliografia P Proceedings, miscellanee, collane generali O P AMS Collana dell'AMS P ICM Congressi Matematici Internazionali P IND Collana dell'INDAM P UMI Convegni dell'UMI WDM Indirizzario mondiale dei matematici X Dizionari, repertori di matematica Come abbiamo detto,  purtroppo molto incompleta la collezione dei Proceedings dei Congressi Matematici Internazionali. La collana dell'AMS, citata i.g. con il titolo Symposia in pure Mathematics,  importante e contiene spesso esposizioni panoramiche di una disciplina. H. EBBINGHAUS e.a.: Numbers. Springer 1991. Il libro di Ebbinghaus e.a. presenta, a livello avanzato, ma partendo dagli inizi e in modo molto esauriente, alcuni aspetti della matematica elementare, legati al concetto di numero e delle sue generalizzazioni. E' un libro estremamente ricco, scritto da alcuni dei pi famosi autori matematici tedeschi di oggi. Si inizia con i numeri naturali, interi, razionali, seguono i numeri reali, descritti mediante sezioni di Dedekind, successioni di Cauchy, successioni decrescenti di intervalli, e metodo assiomatico, il 3¡ capitolo tratta dei numeri complessi e il loro significato geometrico, segue il teorema fondamentale dell'algebra, che dice che ogni polinomio non costante con coefficienti complessi possiede una radice nell'ambito dei numeri complessi, il 5¡ capitolo  interamente dedicato al numero ¹, i suoi legami con le funzioni trigonometriche e le sue rappresentazioni mediante serie e prodotti infiniti. Dopo questi numeri classici seguono le generalizzazioni: Quaternioni e il loro uso nella rappresentazione delle rotazioni nello spazio tridimensionale, i numeri di Cayley, tutto inquadrato nella teoria delle algebre con molto spazio concesso all'uso della topologia nella dimostrazione di teoremi puramente algebrici. Un'algebra  uno spazio vettoriale che  allo stesso tempo e in modo compatibile con la struttura di spazio vettoriale un anello (non necessariamente commutativo): l'esempio classico  l'algebra delle matrici nxn su un corpo. Ogni numero complesso c pu˜ essere identificato con una matrice, quella matrice che descrive l'applicazione lineare da C in C che si ottiene se si moltiplicano tutti i numero complessi con c, in modo tale che all'addizione e alla moltiplicazione di numeri complessi corrispondono l'addizione e la moltiplicazione tra le matrici corrispondenti. Qui C viene considerato come spazio vettoriale reale di dimensione 2. In questo modo il corpo dei numeri complessi  in pratica la stessa cosa come una certa sottoalgebra dell'algebra della matrici 2x2 con coefficienti reali. In modo simile anche i quaternioni diventano un'algebra di matrici. Il libro termina con un'introduzione all'analisi nonstandard, di cui parleremo fra poco nella logica matematica, e del metodo di John H. Conway (John B. Conway  invece autore di uno dei migliori testi di analisi funzionale) di definire i numeri reali mediante giochi. Non ho mai studiato in dettaglio questo metodo, ma ad alcuni piace, i due John Conway sono matematici famosi, e uno degli scopi di questo seminario  proprio di suscitare un p˜ quel piacere di giocare con i numeri e con gli oggetti matematici che un'impostazione dottrinaria facilmente impedisce o rovina. L'ultimo capitolo parla di insiemi, assiomi, metamatematica.

    68. Bücher > - PREISVERGLEICH: Preise Und Angebote Bei Idealo
    bluemud.org scimath-faq-fields Thurston, William Washington DC USA 35 1982 Yau, Shing-Tung Kwuntung China 33 1986Donaldson, Simon Cambridge UK 27 1986 faltings, gerd Germany 32 1986 Freedman
    http://www.buch-idealo.de/1430232841R1C20-Wuestholz-Gerd-Faltings-Gisbert-et-al.

    - PREISVERGLEICH
    BÜCHER-STARTSEITE AUDIO-BÜCHER BELLETRISTIK ... CHARTS IDEALO-PRODUKT-SUCHE Bücher DVD Musik Software Video MEHR PREISVERGLEICH FILME MUSIK SOFTWARE DIGITALE FOTOGRAFIE ... WEBSUCHE Bücher Autor ISBN -Bücher bei BÜCHER-CHARTS - - PREISVERGLEICH A B C D ... Z Platz Bild Produkt/Titel Autor Verlag Format von
    zum Preisvergleich

    69. Faltings, G.: Lectures On The Arithmetic Riemann-Roch Theorem. (AM-127).
    Lectures on the Arithmetic RiemannRoch Theorem. (AM-127). gerd faltings.Paper 1992 $26.95 / £17.95 ISBN 0-691-02544-4 118 pp.
    http://pup.princeton.edu/titles/5158.html
    PRINCETON
    University Press SEARCH:
    Keywords Author Title More Options Power Search
    Search Hints

    E-MAIL NOTICES
    NEW IN PRINT E-BOOKS ... HOME PAGE
    Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127)
    Gerd Faltings
    118 pp.
    Shopping Cart
    Reviews Table of Contents The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory. Review: "This treatise provides a new approach to the arithmetic Riemann-Roch problem, and a widely algebraic-geometric method to solve it." Table of Contents: Introduction List of Symbols Lecture 1 Classical Riemann-Roch Theorem Lecture 2 Chern Classes of Arithmetic Vector Bundles Lecture 3 Laplacians and Heat Kernels Lecture 4 The Local Index Theorem for Dirac Operators Lecture 5 Number Operators and Direct Images Lecture 6 Arithmetic Riemann-Roch Theorem Lecture 7 The Theorem of Bismut-Vasserot References Series:

    70. Matches For: Author=(schoen, C*)
    J. Algebra 135 (1990), no. 1, 118. (Reviewer gerd faltings) 14F20 (11G18)10 91g14008 Jannsen, Uwe Mixed motives and algebraic $K$theory.
    http://www.math.duke.edu/~schoen/mr.html
    Schoen, Chad Varieties dominated by product varieties. Internat. J. Math. (1996), no. 4, 541571. (Reviewer: Xian Wu)
    Gross, B. H.
    Schoen, C. The modified diagonal cycle on the triple product of a pointed curve. Ann. Inst. Fourier (Grenoble) (1995), no. 3, 649679. (Reviewer: James D. Lewis)
    Ross, Marty
    Schoen, Chad Stable quotients of periodic minimal surfaces. Comm. Anal. Geom. (1994), no. 3, 451459. (Reviewer: Nathan Smale)
    Schoen, Chad
    On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field.
    Schoen, Chad
    On Hodge structures and nonrepresentability of Chow groups. Compositio Math. (1993), no. 3, 285316. (Reviewer: James D. Lewis)
    Schoen, Chad
    Some examples of torsion in the Griffiths group. Math. Ann. (1992), no. 4, 651679. (Reviewer: James D. Lewis)
    Schoen, Chad
    Trans. Amer. Math. Soc. (1993), no. 1, 87115. (Reviewer: Wayne Raskind)
    Schoen, Chad
    J. Reine Angew. Math. (1992), 115123. (Reviewer: Enric Nart)
    Schoen, Chad
    On certain modular representations in the cohomology of algebraic curves. J. Algebra

    71. Awards
    1982 Thurston, William Washington DC USA 35 C 1982 Yau, ShingTung Kwuntung HongKong 33 1986 Donaldson, Simon Cambridge UK 27 1986 faltings, gerd Germany 32
    http://www.arthurhu.com/index/aaward.htm
    Awards
    award see aaward.htm
    Contents
    Beauty
    link Miss USA web page Field Forbes Hi Tech 100 Forbes 1998 Hi Tech 100 List of jews on list 1 Grove 2 Horowitz 3 Levy 4 Levine 5 Larry Ellison 6 Michael Dell range of 6-13% 7 Wilner Sailer on Forbes 100 Fortune Richest 40 under 40 Fortune Magazine 2001 list Fox Smartest Kid In America FOX SMARTEST KID IN AMERICA 90% ASIAN Ivy League MattNF compiled these figures: original McArthur Foundation Home Page Fellows Program Millionaire (Who Wants to Be) Apr 2000 "Greg McDivitt" Nobel Prize There are reports that Jews have gotten from 20% up to 40% of the Nobel prizes. It's way more than their population, but it's nowhere near that high. Not many Asians on most lists. Nearly all are Jews, Europeans or Euro-Americans, and the Asians tend to be Asian Americans. Japan has only one about 1 prize per decade. Links Database of the Nobel Laureates %%Asian Cochran Japan has as many nobel prizes - 6 as Australia?!

    72. Fermat S Last Theorem - There Are Bigger Problems
    and I suggest that it might still be usefully reserved) for the case when thereis some reasonably convincing evidence. However, in 1983 gerd faltings, a 29
    http://fermat.workjoke.com/flt6.htm
    Previous chapter: Is there a proof at all?
    Next chapter: There are failures too
    Table of contents
    There are bigger problems
    With all the fuss about FLT, we should keep in mind that it is dealing with only one Diophantine equation, of which many others exist. Finding general tools to solve Diophantine equations is, of course, much more important than the solution of one specific equation. Kummer, whom no one doubts his contribution to proving FLT, expressed himself radically about this subject, and said that FLT is "more a curiosity than a pinnacle of science". Even though activity to prove FLT directly was continued all along the twentieth century, a new direction emerged: stating new problems, much vaster than FLT, the solution of which will also solve FLT immediately, as a special case. This approach to solving mathematical problems was presented clearly by Hilbert, in a famous lecture he gave at the international conference of mathematics, which took place in Paris in 1900: "If we do not succeed in solving a mathematical problem, the reason frequently consists in our failure to recognize the more general standpoint from which the problem before us appears only as a single link in a chain of related problems. After finding this standpoint, not only is this problem frequently more accessible to our investigation, but at the same time we come into possession of a method which is applicable also to related problems. The introduction of complex paths of integration by Cauchy and of the notion of the IDEALS in number theory by Kummer may serve as examples. This way for finding general methods is certainly the most practicable and the most certain; for he who seeks for methods without having a definite problem in mind seeks for the most part in vain."

    73. PNAS -- Faltings 94 (21): 11142
    Integrality of Tatecycles. gerd faltings. Max-Planck-Institut für Mathematik,Gottfried-Claren-Strasse 26, 53225 Bonn, Germany. ABSTRACT ARTICLE REFERENCES.
    http://www.pnas.org/cgi/content/full/94/21/11142

    Abstract of this Article
    PDF Version of this Article Similar articles found in:
    PNAS Online

    ISI Web of Science

    PubMed
    PubMed Citation Search PubMed for articles by:
    Faltings, G.
    Alert me when:
    new articles cite this article

    Download to Citation Manager
    Proc. Natl. Acad. Sci. USA
    Vol. 94, pp. 11142-11142, October 1997
    Colloquium Paper
    This paper was presented at a colloquium entitled "Elliptic Curves and Modular Forms," organized by Barry Mazur and Karl Rubin, held March 15-17, 1996, at the National Academy of Sciences in Washington, DC.
    Integrality of Tate-cycles
    Gerd Faltings
    ABSTRACT
    ARTICLE
    REFERENCES
    ABSTRACT We explain a technical result about p -adic cohomology and apply it to the study of Shimura varieties. The technical result applies to algebraic varieties with torsion-free cohomology, but for simplicity we only treat abelian varieties. ARTICLE Suppose A is an abelian variety over V , a p -adic discrete valuation ring with perfect residue field k . Let V W k V denote the maximal unramified subring, V K and V K the fraction fields. If

    74. PNAS -- Abstracts: Faltings 94 (21): 11142
    DC. Integrality of Tatecycles. gerd faltings. Max-Planck-Institutfür Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany.
    http://www.pnas.org/cgi/content/abstract/94/21/11142

    Full Text of this Article
    PDF Version of this Article Similar articles found in:
    PNAS Online

    ISI Web of Science

    PubMed
    PubMed Citation Search PubMed for articles by:
    Faltings, G.
    Alert me when:
    new articles cite this article

    Download to Citation Manager
    Proc. Natl. Acad. Sci. USA
    Vol. 94, pp. 11142-11142, October 1997
    Colloquium Paper
    This paper was presented at a colloquium entitled "Elliptic Curves and Modular Forms," organized by Barry Mazur and Karl Rubin, held March 15-17, 1996, at the National Academy of Sciences in Washington, DC.
    Integrality of Tate-cycles
    Gerd Faltings We explain a technical result about p -adic cohomology and apply it to the study of Shimura varieties. The technical result applies to algebraic varieties with torsion-free cohomology, but for simplicity we only treat abelian varieties. Current Issue Archives Online Submission Info for Authors ... Sitemap

    75. Kosmologika - Vetenskapsmännen
    Translate this page Deligue, Pierre 1978 Fefferman, Charles 1978 Margulis, Gregori 1982 Connes, Alain1982 Thurston, William 1986 Donaldson, Simon 1986 faltings, gerd 1986 Freedman
    http://www.kosmologika.net/Scientists/
    På Kosmologikas sidor återfinns på många ställen länkar till kortare biografier över olika vetenskapsmän som har deltagit i utvecklandet av dessa spännande teorier. På denna sida finns länkar till alla dessa biografier samlade på ett enda ställe. Personerna är dels listade i både bokstavs- och födelsedagsordning men även efter nobelprisår (för de personer som har fått nobelpriset) samt i betydelsefullhetsordning för vetenskapen. Dessutom har jag nyligen lagt till Brucemedaljörer som är den högsta utmärkelsen inom astronomin, nobelpriset undantaget, samt Fields medalj som är matematikens nobelpris och som dessutom bara delas ut en gång vart fjärde år samt slutligen wolfpriset som är ett israeliskt pris som rankas steget under Nobelpriset men som ofta är åtminstone ett decennium snabbare med utnämningarna. Alfabetisk ordning Ahlfors, Lars (1907- )
    Alembert, Jean le Ronde d' (1717-1783)

    Alfvén, Hannes Olof Gösta (1908-1995)

    Alpher, Ralph A. (1921- )
    ...
    Zwicky, Fritz (1898-1974)

    Födelsedagsordning Fermat, Pierre de (1601-1665)

    76. Seznam Osob Podle Jména: Fa-Fd
    1798); Fallon, Jimmy, (narozený 1974), komik; faltings, gerd, matematik;Falwell, Jerry, (narozený 1933), nás evangelista; Famechon
    http://wikipedia.infostar.cz/l/li/list_of_people_by_name__fa_fd.html
    švodn­ str¡nka Tato str¡nka v origin¡le
    Seznam osob podle jm©na: Fa-Fd
    Seznam osob podle jm©na B C D ... E F G H J ... Z Fa-Fd Fe Ff Fg Fh ... Faber, Heinrich , (dř­ve 1500-1552), teoretik hudby, skladatel Faber, Johann Christoph, (18th stolet­), skladatel Faberg �, Carl , (1846-1920), jewelery n¡vrh¡Å™ Fabian, John, astronaut Fabian, Pope Fabiani, Maks, (1865-1962), architekt Fabio, (narozen½ 1961), model Fabra, Pompeu , (1868-1948), gramatik Fabre, Jean Henri , (1823-1915), entomologist Fabri, Annibale Pio (1697-1760), italsk½ tenor Fabri, Martinus, skladatel Fabriano, křesÅ¥an da , (c. 1370-1427), italsk½ mal­Å™ Fabricius, David , (1564-1617), astronom Fabricius, Georg , (1516-1571), b¡sn­k Němce, historik, archeolog Fabricius, Johannes, (1587-1615), astronom Fabricius, Werner, (1633-1679), skladatel Fabritius, Carel, (1622-1654), mal­Å™ Fabrizi, Aldo, herec Fabrizi, Vincenzo, (1764-po 1812) italsk½ skladatel Fabry, Charles, (1867-1945), fyzik Facchetti, Giacinto, atlet Faccini, Pietro, (1562-1602), mal­Å™ Faccio, Franco, (1840-1891), dirigent Itala, skladatel Fackelmann, Michael, dramatik, autor

    77. Fermat Je Poslední Teorém
    V 1983 gerd faltings dokázaný Mordell dohad, který znamená, že pro nekteréhon 2, tam být u nejvíce finitely mnoho coprime celá císla , b a c s n
    http://wikipedia.infostar.cz/f/fe/fermat_s_last_theorem.html
    švodn­ str¡nka Tato str¡nka v origin¡le
    Fermat je posledn­ teor©m
    Fermat je posledn­ teor©m (tak© volal Fermat je velk½ teor©m ) ř­k¡, že: Tam b½t ne pozitivn­ přirozen¡ č­sla b , a c takov½ to ve kter©m n je přirozen© č­slo větÅ¡­ než 2. 17th-stolet­ matematik Pierre de Fermat psal o tomto v v jeho kopii Claude-Gaspar Bachet ' s překlad slavn½ Diophantus Arithmetica , " J¡ jsem odhalil opravdově v½znamn½ důkaz, ale tento okraj je př­liÅ¡ mal½ obsahovat to ". Důvod proč toto sdělen­ je tak v½znamn© je to vÅ¡echny jin© teor©my navrhovaly Fermat byl urovn¡n jeden důkazy, kter© on dod¡val, nebo pečlivějÅ¡­ma důkazy dod¡van½ pot©. Matematici dlouho byl zmaten t­mto sdělen­m, pro oni byli neschopn­ jeden uk¡zat se jako nebo vyvr¡tit to. Teor©m m¡ čest největÅ¡­ho množstv­ Å¡patn½ch důkazů. Pro různ© zvl¡Å¡tn­ exponenty n , teor©m byl dok¡zan½ za ta l©ta, ale obecn½ př­pad zůstal nepolapiteln½. V Gerd Faltings dok¡zan½ Mordell dohad , kter½ znamen¡, že pro někter©ho n   >   2, tam b½t u nejv­ce finitely mnoho coprime cel¡ č­sla

    78. Uwe F. Mayer: Abstract [14]
    The proof of Fermat s Last Theorem by R. Taylor and A. Wiles. writtenby gerd faltings translated from German by Uwe F. Mayer. Abstract
    http://www.math.utah.edu/~mayer/math/Mayer14.html
    The proof of Fermat's Last Theorem by R. Taylor and A. Wiles
    written by Gerd Faltings
    translated from German by Uwe F. Mayer Abstract: The proof of the conjecture mentioned in the title was finally completed in September of 1994. A. Wiles announced this result in the summer of 1993; however, there was a gap in his work. The paper of Taylor and Wiles does not close this gap but circumvents it. This article is an adaptation of several talks that I [Gerd Faltings] have given on this topic and is by no means about my own work. I have tried to present the basic ideas to a wider mathematical audience, and in the process I have skipped over certain details, which are in my opinion not so much of interest to the non-specialist. The specialists can then alleviate their boredom by finding those mistakes and correcting them. Key words: Fermat's Last Theorem, elliptic curves, modular forms, deformations. You can download a copy of this article (about 4 pages).
    faltings.ps.gz This file is in gzipped postscript format. (113 Kbytes)
    faltings.pdf

    79. Link To Other Metadata Formats
    Creator, Wüstholz, Gisbert. Creator, faltings, gerd. Subject, Mathematical Physicsand Mathematics. Identifier, http//cdsweb.cern.ch/search.py?recid=238170.
    http://arc.cs.odu.edu:8080/dp9/getrecord/oai_dc/cds.cern.ch/oai:cds.cern.ch:2381
    OAI Header Identifier oai:cds.cern.ch:238170 Datestamp Dublin Core Metadata Language eng Creator Creator Faltings, Gerd Subject Mathematical Physics and Mathematics Identifier http://cdsweb.cern.ch/search.py?recid=238170 Date
    Link to other metadata formats

    80. Full Alphabetical Index
    Translate this page di Bruno, Francesco (521*) Faber,Georg (263) Fabri, Honoré (360) Fagnano, Giovanni(64) Fagnano, Giulio (104) Faille, Charles de La faltings, gerd (275*) Fano
    http://alas.matf.bg.ac.yu/~mm97106/math/alphalist.htm
    Full Alphabetical Index
    The number of words in the biography is given in brackets. A * indicates that there is a portrait.
    A
    Abbe , Ernst (602*)
    Abel
    , Niels Henrik (2899*)
    Abraham
    bar Hiyya (641)
    Abraham, Max

    Abu Kamil
    Shuja (1012)
    Abu Jafar

    Abu'l-Wafa
    al-Buzjani (1115)
    Ackermann
    , Wilhelm (205)
    Adams, John Couch

    Adams, J Frank

    Adelard
    of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (12)

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter