Geometry.Net - the online learning center
Home  - Scientists - Dirichlet Lejeune
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Dirichlet Lejeune:     more books (49)
  1. De veterum macarismis (Religionsgeschichtliche Versuche und Vorarbeiten, XIV. Band. 4. Heft) by Gustav Lejeune Dirichlet, 1914
  2. UNTERSUCHUNGEN UBER VERSCHIEDENE ANWENDUNGEN DER INFINITESIMALANALYSIS AUF DIE ZAHLENTHEORIE by Peter Gustav Lejeune-Dirichlet, 1897
  3. Lezioni sulla teoria dei numeri (Italian Edition) by Peter Gustav Lejeune Dirichlet, 1881-01-01
  4. ZAHALENTHEORIE (German Edition) by Lejeune Dirichlet, 2009-11-25
  5. Thucydides I, 1-23 (1906) (German Edition) by Thucydides, G. Lejeune Dirichlet, 2010-01-29
  6. UNTERSUCHUNGEN ÜBER EIN PROBLEM DER HYDRODYNAMIK. by G. Lejeune. DIRICHLET, 1860
  7. Der Philosoph Seneca Als Quelle Für Die Beurteilung Der Ersten Römischen Kaiser (German Edition) by Georg Lejeune Dirichlet, 2010-04-04
  8. De Equitibus Atticis (1882) (Latin Edition) by Georgius Lejeune Dirichlet, 2010-09-10
  9. De Equitibus Atticis (1882) (Latin Edition) by Georgius Lejeune Dirichlet, 2010-09-10
  10. Vorlesungen über die im umgekehrten Verhältniss des Quadrats der Entfernung wirkenden Kräfte (German Edition) by Peter Gustav Lejeune-Dirichlet, 1887-01-01
  11. Vorlesungen +â-+ber Zahlentheorie by Peter Gustav Lejeune Dirichlet, 2006
  12. Vorlesungen Über Die Im Umgekehrten Verhältniss Des Quadrats Der Entfernung Wirkenden Kräfte (German Edition) by Peter Gustav Lejeune Dirichlet, 2010-01-10
  13. Die Darstellung Ganz Willkürlicher Functionen Durch Sinus- Und Cosinusreihen (German Edition) by Peter Gustav Lejeune Dirichlet, Philipp Ludwig Seidel, 2010-03-15
  14. Die Darstellung Ganz Willkurlicher Functionen Durch Sinus Und Cosinusreihen (1900) (German Edition) by Peter Gustav Lejeune Dirichlet, Philipp Ludwig Seidel, 2010-09-10

41. Johann Peter Gustav Lejeune Dirichlet - Wikipedia, The Free Encyclopedia
Back to Encyclopedia Main Page Printable Version of this Page Encyclopedia helpPhatNav s Encyclopedia A Wikipedia . Johann Peter Gustav lejeune dirichlet.
http://www.phatnav.com/wiki/wiki.phtml?title=Johann_Peter_Gustav_Lejeune_Dirichl

42. The Mathematics Genealogy Project - Gustav Dirichlet
Select a mirror NDSU (main) AMS Bielefeld Ole Miss IMPA. Gustav Peter lejeune DirichletBiography Honorary Rheinische FriedrichWilhelms-Universität Bonn 1827.
http://www.genealogy.ams.org/html/id.phtml?id=17946

43. Biografi: Lejeune Dirichlet
JOHANN PETER GUSTAV lejeune dirichlet 1805 1859. dirichlets familie stammetfra Belgia, men han ble født i Düren i Tyskland der faren var postmester.
http://www.matematikk.org/artikkel/vis.php?id=852

44. Johann Peter Gustav Lejeune Dirichlet
Johann Peter Gustav lejeune dirichlet. Johann Peter Gustav lejeunedirichlet (Únor 13, 1805 Kveten 5, 1859) byl Nemec matematik
http://wikipedia.infostar.cz/j/jo/johann_peter_gustav_lejeune_dirichlet.html
švodn­ str¡nka Tato str¡nka v origin¡le
Johann Peter Gustav Lejeune Dirichlet
Johann Peter Gustav Lejeune Dirichlet šnor 13 Květen 5 ) byl Němec matematik připoč­tan½ s modern­ " form¡ln­ " definice funkce Jeho rodina padal od města Richelet v Belgie , od kter©ho jeho př­jmen­ " Lejeune Dirichlet " (" le jeune de Richelet " = " mlad½ chlap­k od Richelet ") byl odvozen, a to bylo kde jeho dědeček žil. Dirichlet se narodil v D � ren, kde jeho otec byl spr¡vce poÅ¡ty . On byl vzdělan½ v Německo , a pak Francie , kde on poučil se z mnoho z nejproslulejÅ¡­ch matematiků dne. Jeho prvn­ studie byla zapnut¡ Fermat je posledn­ teor©m . Toto bylo slavn½ dohad (nyn­ dok¡zan½) to řečen½ to pro n > 2, rovnice x n y n z n m¡ ž¡dn¡ řeÅ¡en­, oddělen½ od těch nepatrn½ch v kter©m x y , nebo z je nula. On produkoval č¡stečn½ doklad pro kazetu n = 5, kter½ byl vyplněn½ Adrien-Marie Legendreov¡ , kdo byl jeden z rozhodč­ch. Dirichlet tak© si odbyl jeho vlastn­ důkaz t©měř z¡roveň; on později tak© produkoval pln½ doklad pro kazetu n On se vzal Rebecca Mendelssohn, kdo přiÅ¡el z v½značn½

45. Johann Peter Gustav Lejeune Dirichlet
Johann Peter Gustav lejeune dirichlet (February 13, 1805 May 5, 1859) was a Germanmathematician credited with the modern formal definition of a function.
http://www.xasa.com/wiki/en/wikipedia/j/jo/johann_peter_gustav_lejeune_dirichlet

Johann Peter Gustav Lejeune Dirichlet

Wikipedia
Johann Peter Gustav Lejeune Dirichlet February 13 May 5 ) was a German mathematician credited with the modern "formal" definition of a function His family hailed from the town of Richelet in Belgium , from which his surname "Lejeune Dirichlet" ("le jeune de Richelet" = "the young chap from Richelet") was derived, and that was where his grandfather lived. Dirichlet was born in Düren, where his father was the postmaster . He was educated in Germany , and then France , where he learnt from many of the most renowned mathematicians of the day. His first paper was on Fermat's Last Theorem . This was a famous conjecture (now proven) that stated that for n > 2, the equation x n y n z n has no solutions, apart from the trivial ones in which x y , or z is zero. He produced a partial proof for the case n = 5, which was completed by Adrien-Marie Legendre , who was one of the referees. Dirichlet also completed his own proof almost at the same time; he later also produced a full proof for the case n He married Rebecca Mendelssohn, who came from a distinguished

46. MathSeek.com - Site Profile For Dirichlet - Johann Peter Gustav
dirichlet Johann Peter Gustav lejeune dirichlet (1805-1859) Site Profile.Title dirichlet - Johann Peter Gustav lejeune dirichlet (1805-1859).
http://www.mathseek.com/profiles/4404.php
@import url(http://www.animationseek.com/style.css); Search Directory Forum
Dirichlet - Johann Peter Gustav Lejeune Dirichlet (1805-1859) Site Profile
Title: Dirichlet - Johann Peter Gustav Lejeune Dirichlet (1805-1859) Description: Proved that in any arithmetic progression with first term coprime to the difference there are infinitely many primes, units in algebraic number theory, ideals, proposed the modern definition of a function. Url: http://turnbull.dcs.st-and.ac.uk/~history/Mathematicians/Dirichlet.html Category: Science/Math/History/People
Add / Update Url
Become an Editor Link to Us ...
MathSeek.com
- Math Search Engine - Seeking Sites about Math,Applications,Education,Recreations,Statistics,Algebra,Analysis,Chaos,Fractals,Combinatorics,Differential,Equations,Geometry,Logic,Foundations,Number,Theory,Numerical,Analysis,Operations,Research,Precalculus.
PhysicsSeek.com
SocialScienceSeek.com TechnologySeek.net BaseballSeek.com ... MartialArtsSeek.com

47. Peter Gustav Lejeune Dirichlet
Translate this page Peter Gustav lejeune dirichlet. Academicus.ch - Kostenloses Online-Lexikon. PeterGustav lejeune dirichlet. Peter Gustav lejeune dirichlet (* 13.
http://www.academicus.ch/de/peter_gustav_lejeune_dirichlet.html
Peter Gustav Lejeune Dirichlet
Academicus.ch - Kostenloses Online-Lexikon
Hauptseite Edit this page
Peter Gustav Lejeune Dirichlet
Peter Gustav Lejeune Dirichlet 13. Februar in Düren bei Köln 5. Mai in Göttingen ) war ein deutscher Mathematiker Er war seit 1831 verheiratet mit Rebecca geb. Mendelssohn-Bartholdy, eine Schwester des Komponisten Felix Mendelssohn Table of contents showTocToggle("show","hide") 1 Leben
2 Werke

3 Literatur

4 Weblinks
Leben
Dirichlets Grosseltern stammten aus dem Ort Richelet in Belgien . Dies erkärt den französisch klingenden Namen: Le jeune de Richelet bedeutet sinngemäss Jugend von Richelet
Mit 12 Jahren besuchte Dirichlet zunächst ein Gymnasium in Bonn ; 2 Jahre später wechselte er zum Jesuiten Gymnasium in Köln, wo er u.a. von Georg Simon Ohm (entdeckte das Gesetz des elektrischen Widerstandes) unterrichtet wurde. Im Mai 1822 begann er das Mathematikstudium in Paris und traf hier mit den bedeutendsten französischen Mathematikern dieser Zeit - u.a. Biot, Fourier, Francoeur, Hachette, Laplace , Lacroix, Legendre und Poisson - zusammen. 1825 machte er erstmals auf sich aufmerksam, indem er zusammen mit

48. About "Peter Gustav Lejeune Dirichlet"
Peter Gustav lejeune dirichlet.
http://mathforum.org/library/view/41764.html
Peter Gustav Lejeune Dirichlet
Library Home
Full Table of Contents Suggest a Link Library Help
Visit this site: http://amt.canberra.edu.au/dirichle.html Author: Australian Mathematics Trust Description: A biography of the mathematician that discusses his theorem, introduction of the function notation y = f(x), boundary problems, minimization principle, and the Pigeonhole Principle. Levels: Middle School (6-8) High School (9-12) College Languages: English Resource Types: Preprints Math Topics: History and Biography
Home
The Math Library Quick Reference ... Contact Us
http://mathforum.org/

49. Johann Peter Gustav Lejeune Dirichlet - Information
An online Encyclopedia with information and facts Johann Peter Gustav LejeuneDirichlet Information, and a wide range of other subjects.
http://www.book-spot.co.uk/index.php/Johann_Peter_Gustav_Lejeune_Dirichlet
Johann Peter Gustav Lejeune Dirichlet - Information Home
Mathematical and natural sciences

Applied arts and sciences

Social sciences and philosophy
... fr:Johann Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet February 13 May 5 ) was a German mathematician credited with the modern "formal" definition of a function His family hailed from the town of Richelet in Belgium , from which his surname "Lejeune Dirichlet" ("le jeune de Richelet" = "the young chap from Richelet") was derived, and that was where his grandfather lived. Dirichlet was born in Düren , where his father was the postmaster . He was educated in Germany , and then France , where he learnt from many of the most renowned mathematicians of the day. His first paper was on Fermat's Last Theorem . This was a famous conjecture (now proven) that stated that for n > 2, the equation x n y n z n has no solutions, apart from the trivial ones in which x y , or z is zero. He produced a partial proof for the case n = 5, which was completed by Adrien-Marie Legendre , who was one of the referees. Dirichlet also completed his own proof almost at the same time; he later also produced a full proof for the case n He married Rebecca Mendelssohn , who came from a distinguished Jewish family, being a granddaughter of the philosopher

50. Prosta Zasada
Czlowiek i epoka. Johann Peter Gustav lejeunedirichlet (1805-1859) byl znakomitymmatematykiem niemieckim, pochodzacym z rodziny francuskich emigrantów.
http://www.wsip.com.pl/serwisy/czasmat/mat599/mat5991.htm
Prosta zasada
Jaros³aw Górnicki
Matematyka 5/1999 (fragment) W artykule tym pragniemy przypomnieæ twierdzenie nazywane zasad± szufladkow± Dirichleta, na cze¶æ J. P. G. Lejeune-Dirichleta (1805-1859), najwybitniejszego matematyka jaki wyk³ada³ na uniwersytecie we Wroc³awiu. Twierdzenie to powinno koniecznie by† prezentowane w szkole ¶redniej. Ma ono charakter kombinatoryczny, przy bardzo prostym sformu³owaniu prowadzi do ciekawych, niebanalnych wniosków, u³atwia rozwi±zywanie wielu trudnych zadañ.
Cz³owiek i epoka
Johann Peter Gustav Lejeune-Dirichlet (1805-1859) by³ znakomitym matematykiem niemieckim, pochodz±cym z rodziny francuskich emigrantów. Studia we Francji i Niemczech oraz znajomo¶æ z tej miary matematykami co Carl Friedrich Gauss, którego by³ uczniem, Carl Gustav Jacobi, Jean B. Fourier da³y mu doskona³± znajomo¶æ trendów ówczesnej matematyki. Uzyskane przez Dirichleta wyniki, nale¿±ce do szeroko rozumianej analizy matematycznej, zapewni³y mu uznanie wspó³czesnych i trwa³e miejsce w historii matematyki. W 1855 roku Dirichlet zosta³ nastêpc± Gaussa na uniwersytecie w Getyndze; wcze¶niej by³ profesorem uniwersytetów we Wroc³awiu i Berlinie. Jego uczniami byli Rudolf Lipschitz i Bernhard Riemann, który w 1859 roku zosta³ jego nastêpc± w Getyndze. Dzia³alno¶æ Lejeune-Dirichleta przypada na okres, w którym tworzy plejada wybitnych matematyków (Abel, Bolyai, Cauchy, Galois, Laplace, Poisson), a niemiecka szko³a matematyczna (Gauss, Dedekind, Kronecker, Kummer, Riemann, Weierstrass, a pó¼niej Cantor, Hilbert, Klein) nale¿y do najlepszych w ¶wiecie. Pocz±tek XIX wieku to równie¿ okres, w którym uwaga matematyków koncentruje siê wokó³ analizy matematycznej. Ten dzia³ matematyki ze wzglêdu na jego spektakularne zastosowania w naukach przyrodniczych i technicznych zapewnia matematyce pozycjê wyj±tkow± -

51. Anecdote - Peter Gustav Lejeune Dirichlet - Math Lover
Jewels are not weighed on a grocery scale. (Gauss s motto? Few, but ripe. ) dirichlet,Peter Gustav lejeune (18051859) German mathematician Sources The
http://www.anecdotage.com/index.php?aid=14029

52. Anecdote - Peter Gustav Lejeune Dirichlet - Telegram
Its message? 2 + 1 = 3. dirichlet, Peter Gustav lejeune (18051859) Germanmathematician Sources The Faber Book of Anecdotes More Peter dirichlet
http://www.anecdotage.com/index.php?aid=18

53. Dirichlet - Johann Peter Gustav Lejeune Dirichlet (1805-1859)
Proved that in any...... Home Detailed Information. Name dirichlet Johann Peter GustavLejeune dirichlet (1805-1859)
http://www.science-search.org/index/Math/History/People/23299.htm

Search in Science-Search.org for:

What's new
Top Searches Statistics Science News ... Home : Detailed Information
Name: Dirichlet - Johann Peter Gustav Lejeune Dirichlet (1805-1859) Description: Proved that in any arithmetic progression with first term coprime to the difference there are infini Category: People Url: http://turnbull.dcs.st-and.ac.uk/~history/Mathematicians/Dirichlet.html Date: Current Rating: Clicks/Hits Received:
Rate this web site:
Rating:
Votes: Web site owner:
Allow people to rate your site on your site

Modify your link
Something wrong with this resource?
Report this link as broken

About Us
Contact Us Site Guide ... Add Science Search to Your Web Site The Science Search Directory is based on DMOZ. Science Search has modified and enhanced this data. Submitting to DMOZ: Help build the largest human-edited directory on the web. Submit a Site Open Directory Project Become an Editor Science Search's Sponsors: Goom NL

54. WIEM: Dirichlet Peter Gustaw Lejeune
dirichlet Peter Gustaw lejeune (18051859), pochodzacy z francuskiej rodzinyniemiecki matematyk, uczen Gaussa, profesor uniwersytetów kolejno
http://wiem.onet.pl/wiem/00b7db.html
WIEM 2004 - zobacz now± edycjê encyklopedii! Kup abonament i encyklopediê na CD-ROM, sprawd¼ ofertê cenow±!
Oferta specjalna abonamentów dla szkó³ i instytucji!
Uwaga!
Przedstawione poni¿ej has³o pochodzi z archiwalnej edycji WIEM 2001!
Prace redakcyjne nad edycj± 2001 zosta³y zakoñczone. Zapraszamy do korzystania z nowej, codziennie aktualizowanej i wzbogacanej w nowe tre¶ci edycji WIEM 2004 Matematyka, Niemcy
Dirichlet Peter Gustaw Lejeune
Dirichlet Peter Gustaw Lejeune (1805-1859), pochodz±cy z francuskiej rodziny niemiecki matematyk, uczeñ Gaussa , profesor uniwersytetów kolejno: we Wroc³awiu, Berlinie i Getyndze, cz³onek Berliñskiej i Paryskiej Akademii Nauk. Autor wielu prac z dziedziny teorii liczb, analizy matematycznej (szczególnie teorii szeregówrachunku wariacyjnego ) i fizyki teoretycznej (zagadnienia potencja³u pola). WIEM zosta³a opracowana na podstawie Popularnej Encyklopedii Powszechnej Wydawnictwa Fogra zobacz wszystkie serwisy do góry

55. References For Dirichlet
Translate this page References for Johann Peter Gustav lejeune dirichlet. HJ Koch, PG lejeune dirichletzu seinem 175. Geburtstag, Mitt. Math. Ges. DDR 2-4 (1981), 153-164.
http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/~DZ1906.htm
References for Johann Peter Gustav Lejeune Dirichlet
  • Biography in Dictionary of Scientific Biography (New York 1970-1990).
  • Biography in Encyclopaedia Britannica. Books:
  • E E Kummer, Peter Gustav Lejeune Dirichlet, in L Kronecker and L Fuchs, G Lejeune Dirichlets Werke (Berlin, 1889-97). Articles:
  • P L Butzer, Dirichlet and his role in the founding of mathematical physics, Arch. Internat. Hist. Sci.
  • Sudhoffs Arch.
  • P L Butzer, M Jansen and H Zilles, Johann Peter Gustav Lejeune Dirichlet (1805-1859): Genealogie und Werdegang,
  • H Davenport, Dirichlet, Math. Gazette
  • H Fischer, Dirichlet's Contribution to Mathematical Probability Theory, Historia Mathematica
  • H J Koch, P G Lejeune Dirichlet zu seinem 175. Geburtstag, Mitt. Math. Ges. DDR
  • H Koch, Uber das Leben und Werk Johann Peter Gustav Lejeune Dirichlets : Zu seinem 175. Geburtstag, Sitzungsberichte der Akademie der Wissenschaften der DDR, Mathematik- Naturwissenschaften- Technik, Jahrgang 1981 (Berlin, 1982).
  • Kh Kokh, On the occasion of the 175th anniversary of the birth of P G Lejeune Dirichlet (Russian), Istor.-Mat. Issled.
  • 56. Dirichlet
    Johann Peter Gustav lejeune dirichlet. Born 13 Feb 1805 in Düren, French Empire(now Germany) Died 5 May 1859 in Göttingen, Hanover (now Germany).
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/Drchlt.htm
    Johann Peter Gustav Lejeune Dirichlet
    Born:
    Died:
    Show birthplace location Previous (Chronologically) Next Biographies Index
    Previous
    (Alphabetically) Next Welcome page Lejeune Dirichlet proved that in any arithmetic progression with first term coprime to the difference there are infinitely many primes. Dirichlet taught at the University of Breslau in 1827 and the University of Berlin from 1828 to 1855. He then succeeded to Gauss He proved in 1826 that in any arithmetic progression with first term coprime to the difference there are infinitely many primes. This had been conjectured by Gauss His work on units in algebraic number theory (published 1863) contains important work on ideals. He also proposed in 1837 the modern definition of a function. If a variable y is so related to a variable x that whenever a numerical value is assigned to x, there is a rule according to which a unique value of y is determined, then y is said to be a function of the independent variable x. In mechanics he investigated the equilibrium of systems and potential theory. This led him to the Dirichlet problem concerning harmonic functions with given boundary conditions. Dirichlet is best known for his papers on conditions for the convergence of trigonometric series and the use of the series to represent arbitrary functions. These series had been used previously by

    57. Dirichlet Series
    In mathematics, a dirichlet series, one of a number of concepts named in honorof Johann Peter Gustav lejeune dirichlet, is a series of the form.
    http://www.fact-index.com/d/di/dirichlet_series.html
    Main Page See live article Alphabetical index
    Dirichlet series
    In mathematics , a Dirichlet series , one of a number of concepts named in honor of Johann Peter Gustav Lejeune Dirichlet , is a series of the form The most famous of Dirichlet series is which is the Riemann zeta function Other Dirichlet series are: n
    n ) is the totient function , and a n ) is the divisor function
    See also

    58. Dirichlet Kernel
    named after Johann Peter Gustav lejeune dirichlet, is 2p times the nthdegree Fourierseries approximation to a function with period 2p given by where d
    http://www.fact-index.com/d/di/dirichlet_kernel.html
    Main Page See live article Alphabetical index
    Dirichlet kernel
    The Dirichlet kernel named after Johann Peter Gustav Lejeune Dirichlet n th-degree Fourier series Dirac delta function , which is not really a function, in the sense of mapping one set into another, but is rather a "generalized function", also called a "distribution". In other words, the Fourier series representation of this "function" is This "periodic delta function" is the identity element for the convolution In other words, we have for every function f D n x ) with any function f n th-degree Fourier series approximation to f , i.e., we have where is the k th Fourier coefficient of f The trigonometric identity displayed at the top of this article may be established as follows. First recall that the sum of a finite geometric series is The first term is a ; the common ratio by which each term is multiplied to get the next is r ; the number of terms is n + 1. In particular, we have The expression to the left of "=" should make us expect the sum to be a symmetric function of r and 1/ r , but the expression to the right of "=" is perhaps less-than-obviously symmetric in those two quantities. The remedy is to multiply both the numerator and the denominator by

    59. Peter Gustav Lejeune Dirichlet - Wikipedia
    Translate this page Peter Gustav lejeune dirichlet. aus Wikipedia, der freien Enzyklopädie.Peter Gustav lejeune dirichlet (* 13. Februar
    http://de.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
    Peter Gustav Lejeune Dirichlet
    aus Wikipedia, der freien Enzyklopädie
    Peter Gustav Lejeune Dirichlet 13. Februar in Düren bei Köln 5. Mai in Göttingen ) war ein deutscher Mathematiker Er war seit verheiratet mit Rebecca geb. Mendelssohn-Bartholdy, eine Schwester des Komponisten Felix Mendelssohn Bartholdy Inhaltsverzeichnis showTocToggle("Anzeigen","Verbergen") 1 Leben
    2 Werke

    3 Literatur

    4 Weblinks
    ...
    bearbeiten
    Leben
    Dirichlets Grosseltern stammten aus dem Ort Richelet in Belgien . Dies erkärt den französisch klingenden Namen: Le jeune de Richelet bedeutet sinngemäss Der Junge von Richelet Mit 12 Jahren besuchte Dirichlet zunächst ein Gymnasium in Bonn ; 2 Jahre später wechselte er zum Jesuiten Gymnasium in Köln, wo er u.a. von Georg Simon Ohm (entdeckte das Gesetz des elektrischen Widerstandes) unterrichtet wurde. Im Mai begann er das Mathematikstudium in Paris und traf hier mit den bedeutendsten französischen Mathematikern dieser Zeit - u.a. Biot Fourier Francoeur Hachette ... Legendre und Poisson - zusammen. machte er erstmals auf sich aufmerksam, indem er zusammen mit Adrien-Marie Legendre für den Spezialfall n = 5 die Fermatsche Vermutung bewies: Es gibt keine ganzen Zahlen a,b,c und n > 2 welche die Bedingung a

    60. DIRICHLET, Gustav Peter Lejeune, Beweis Des Satzes, Dass Jede Unbegrenzte Arithm
    dirichlet, Gustav Peter lejeune Beweis des Satzes, dass jede unbegrenzte arithmetischeProgression, deren erstes Glied und Differenz ganze Zahlen ohne
    http://www.polybiblio.com/watbooks/2388.html
    W. P. Watson Antiquarian Books
    The Dirichlet Theorem DIRICHLET, Gustav Peter Lejeune Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Mathematische Abhandlungen der Königlichen Akademier der Wissenschaften aus dem Jahre 1837. Berlin, F. Dümmler, 1839 4to (258 x 205 mm), pp 45-71 of the issue; a fine copy, marbled paper spine, otherwise unbound as issued. £1450
    First edition (possible offprint form) of Dirichlet's classic paper on prime numbers in arithmetic progressions, read on 27 July 1837 but not published until two years later. 'At a meeting of the Accademy of Sciences..., Dirichlet presented his first paper on analytic number theory. In this memoir he gives a proof of the fundamental theorem that bears his name: Any arithmetical series of integers an + b, n = 0, 1, 2, ..., where a and b are relatively prime, must include an infinite number of primes. This result had long been conjectured and Legendre had expended considerable effort upon finding a proof, but it had been established only for a few special cases' (DSB). This item is listed on Bibliopoly by W. P. Watson Antiquarian Books

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter