Geometry.Net - the online learning center
Home  - Scientists - De La Vallee Poussin,
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         De La Vallee Poussin,:     more books (62)
  1. La védisme (French Edition) (2010 Reprint) by Louis de La Vallée Poussin, 2010-01-26
  2. Sur La Fonction [Zeta](S) De Riemann Et Le Nombre Des Nombres Premiers Inferieurs À Une Limite Donnée (French Edition) (2010 Reprint) by Charles Jean Vallée De La Poussin, 2010-01-26
  3. Charles-Jean de La Vallee Poussin: Collected Works Oeuvres Scientifiques, Volume 2 by Charles-Jean de La Vallee Poussin, 2001
  4. Recherches Analytiques Sur La Théorie Des Nombres Premiers, Parts 1-5 (French Edition) (2010 Reprint) by Charles Jean Vallée De La Poussin, 2010-01-26
  5. Integrales de Lebesgue Fonctions D'ensemble Classes de Baire Deuxieme Edition by C. de La Vallee Poussin, 1934-01-01
  6. Cours d'analyse infinitésimale; tome II, neuvième édition. Revue et augmentée avec la collaboration de Fernand Simonart. by Ch.-J. [Charles Jean] De La Vallée Poussin, 1957-01-01
  7. Abhidharmakosabhasyam (Adhidharmakosa Bhasyam) 4 Volume Set by Vasubandhu, 1988
  8. On the Approximation of Functions of a Real Variable and on Quasi-Analytic Functions. The Rice Institute Pamphlet Vol. XII, No. 2 by Charles de la Vallee Poussin, 1925
  9. Cours D'Analyse Infinitesimale. 2 Vols. by De La Vallee Poussin, 1946
  10. Integrales de Lebesgue Fonctions D'Ensemble Classes de Baire. by C. de La Vallee, Poussin, 1934
  11. The Buddhist Councils by Louis de La Vallee Poussin, 1976
  12. DYNASTIES ET HISTOIRE D L'INDE DEPUIS KANISHKA JUSQU'AUX INVASIONS by Louis de LA VALLEE POUSSIN, 1935
  13. Cours d'analyse infinitésimale (French Edition)
  14. Sur La Fonction De Riemann Et Le Nombre Des Nombres Premiers Inferieurs A Une Limite Donnee (1899) (French Edition) by Charles Jean De La Vallee Poussin, 2010-09-10

61. The Prime Number Theorem
Thirty years later the necessary analytic tools were at hand, and in 1896 JacquesSalomonHadamard and Charles Jean de la vallee-Poussin independently proved
http://users.forthnet.gr/ath/kimon/PNT/Prime Number Theorem.htm
The Prime Number Theorem
The search for the order of magnitude of two arithmetical functions related to primes led to one of the most profound theorems in number theory, the prime number theorem. If p n denotes the n th prime number and n ) denotes the number of primes in the interval from 1 to n, Euclid's theorem on the infinitude of primes guarantees that n as n . It is natural to ask how p n and n ) grow as functions of n for large n. Irregularities in the distribution of primes and the lack of a simple formula for determining primes suggest that precise answers to these questions might be difficult or impossible to obtain. It seems astonishing to learn that answers can be obtained, and they are remarkably simple: For large n, the n th prime p n grows as n log n, whereas n ) grows as n /log n. Each of these statements implies the other, and each is known as the prime number theorem. More precisely, the prime number theorem can be stated in two equivalent forms: and These relations are written more simply as n n /log n and p n n log n and are expressed verbally by saying that n ) is asymptotic to n /log n and that p n is asymptotic to n log n

62. == •t‘®}‘ŠÙ‚ւ̈ړ®}‘ƒŠƒXƒg ==
Hafner Publishing Company @1971 @Integrales de Lebesgue Fonctions densembleClasses de Baire (2?) @C.de la vallee Poussin @Gauthier_Villars @1950
http://www.math.nara-wu.ac.jp/tosyo/idotosyo.htm
‚±‚̃ŠƒXƒg‚́C‘åŠw‰@¶‚̍¡‰ª‚³‚ñC‹k‚‚³‚ñC´“‡‚³‚ñC‚S‰ñ¶—LŽu‚É ì¬(1998/6,7ŒŽ)‚µ‚Ä‚à‚ç‚¢‚Ü‚µ‚½D
—ƒ^ƒCƒgƒ‹
—o”ÅŽÐ
—o”Å”N
‚̏‡‚Ńf[ƒ^‚ª•À‚ñ‚Å‚Ü‚·
—”—“ŒvŠw ‰ü’ù”Å
—H“¡ O‹g
—Œ»‘㐔ŠwuÀ 23 i‹¤—§o”ÅŠ”Ž®‰ïŽÐ)
—1968”N
—‰ðÍŠô‰½Šw
—Šî‘b”ŠwuÀ i‹¤—§o”Łj —1955”N —›‰—p”Šw —ŽÄŠ_ ˜aŽO—Y —Šî‘b”ŠwuÀ i‹¤—§o”Łj —1955”N —”Šw‹³Žö–@ —¬—Ñ ‘Pˆê E ˆäã ‹`•v —Šî‘b”ŠwuÀ i‹¤—§o”Å) —1956”N —‘㐔Šw —‰œì Œõ‘¾˜Y —Šî‘b”ŠwuÀ (‹¤—§o”Łj —1955”N —ˆÊ‘Š”Šw —‰Í“c Œh‹` —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —”÷•ªŠô‰½Šw —²X–Ø d•v —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —s—ñ‚ƍs—ñŽ® —ó–ì Œ[ŽO —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1955”N —‰“™Šô‰½Šw —Ž›ã ‰pF —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —•ŸŒ´ –žB—Y —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1955”N —”ŠwŽj —’†‘º KŽl˜Y —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —‹g“c kì —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —Šm—¦‚¨‚æ‚Ñ“Œv —ŠÛŽR ‹VŽl˜Y —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —Œ÷—Í ‹à“ñ˜Y —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1956”N —Šî‘b”ŠwuÀ (‹¤—§o”Å) —1955”N —“dŽqŒvŽZ‹@“±“ü‚ÌŽèˆø —1961”N —•Êû BASIC‚ÌŠî‘b —•ÒWG•Ð‹Ë d‰„ —“Œ‹ž“d‹@‘åŠwo”Å‹Ç —1980”N —‘ŽR Œ³ŽO˜Y —“Œ‹ž‘åŠw‹¦‘go”Å•” —1950”N ŠÄC “¡‰ª —R•v —1950”N ŠÄC “¡‰ª —R•v —1950”N —œAì”ŠwƒVƒŠ[ƒY‚V ƒIƒyƒŒ[ƒVƒ‡ƒ“ƒYEƒŠƒT[ƒ`“ü–å —¼“c ³ˆê —“Œ‹žœAì‘“X —1966”N —”—“ŒvŠw —²“¡ —Ljê˜Y —1943”N —²“¡ —Ljê˜Y —1948”N —­”—ñ‚Ì‚Ü‚Æ‚ß•û ‰ü’ù”ŇT —‘ŽR Œ³ŽO˜Y —•“à‘“XVŽÐ

63. Vallee_Poussin
Charles Jean Gustave Nicolas Baron de la Vallée Poussin. Vallée Poussin alsostudied at the University of Paris and at the University of Berlin.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Vallee_Poussin.html
Born: 14 Aug 1866 in Louvain, Belgium
Died: 2 March 1962 in Louvain, Belgium Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
th prime number theorem . This states that p x ), the number of primes x , tends to x /log e x as x tends to infinity. The prime number theorem had been conjectured in the 18 th century, but in 1896 two mathematicians independently proved the result, namely Hadamard Riemann in 1851. The clue to two independent proofs being produced at the same time is that the necessary tools in complex analysis had not been developed until that time. In fact the solution of this major open problem was one of the major motivations for the development of complex analysis during the period from 1851 to 1896. Riemann zeta function which he published in 1916. The Riemann hypothesis , perhaps the most famous of all the still open questions of mathematics, is that all the complex zeros of the zeta function lie on the line 1/2 + i b Hardy Hardy and Littlewood proved still stronger results in 1918.

64. Vallee_Poussin
Biography of Charles de la Vallée Poussin (18661962) Charles de la Vallée Poussin's father was the professor of mineralogy and geology at the University of Louvain own name of la Vallée. So
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Vallee_Poussin.html
Born: 14 Aug 1866 in Louvain, Belgium
Died: 2 March 1962 in Louvain, Belgium Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
th prime number theorem . This states that p x ), the number of primes x , tends to x /log e x as x tends to infinity. The prime number theorem had been conjectured in the 18 th century, but in 1896 two mathematicians independently proved the result, namely Hadamard Riemann in 1851. The clue to two independent proofs being produced at the same time is that the necessary tools in complex analysis had not been developed until that time. In fact the solution of this major open problem was one of the major motivations for the development of complex analysis during the period from 1851 to 1896. Riemann zeta function which he published in 1916. The Riemann hypothesis , perhaps the most famous of all the still open questions of mathematics, is that all the complex zeros of the zeta function lie on the line 1/2 + i b Hardy Hardy and Littlewood proved still stronger results in 1918.

65. CHARLES-JOSEPH DE LA VALLÉE POUSSIN
CharlesJoseph de la Vallée Poussin. Obituary. This is a reproduction of an article in JLMS 39 (1964) 165-175,
http://www.numbertheory.org/obituaries/LMS/de_la_vallee_poussin
Obituary This is a reproduction of an article in JLMS 39 (
with the kind permission of the London Mathematical Society Back to some biographies of past contributors to number theory (Vancouver Site) Last updated at 18th June 2003

66. THE DE LA VALLÉE POUSSIN THEOREM FOR VECTOR VALUED MEASURE SPACES
THE de la VALLÉE POUSSIN. THEOREM FOR VECTOR VALUED. MEASURE SPACES. MARÍA J. RIVERA. Abstract The purpose of this paper is to extend the de la Vallée Poussin theorem to
http://math.la.asu.edu/~rmmc/rmj/VOL30-2/RIV

THEOREM FOR VECTOR VALUED
MEASURE SPACES
Abstract:
, the space of measures defined in with values in the Banach space X which are countably additive, of bounded variation and -continuous, endowed with the variation norm.

67. One Of The Hadamard- La Vallee-Poussin Constant 1.034653881897438
One of the Hadamard la vallee-Poussin constant 1.034653881897438 =gamma + Sum((log(1-1/p)+ 1/(p-1)) with p prime. References Hardy
http://pi.lacim.uqam.ca/piDATA/HadamardLVP.txt
One of the Hadamard- La Vallee-Poussin constant 1.034653881897438 = gamma + Sum((log(1-1/p)+ 1/(p-1)) with p prime. References Hardy and Wright, An Introduction to the Theory of Numbers, Oxford 1960, chap 22.11 P. Erdos and M. Kac , American journal of Math. 26, 1940 738-742. also Knuth, D.E., The Art of Computer Programming, vol. 2, Seminumerical Algorithms, page 368 (section 4.5.4)

68. Cours D'analyse Infinitésimale, Par Ch.-J. De La Vallée Poussin,
Cours d'analyse infinitésimale, par Ch.J. de la Vallée Poussin, math Vol.2 lacking la Vallée Poussin, Charles Jean de, b. 1866. Charles Jean de, b. 1866. la Vallée Poussin
http://rdre1.inktomi.com/click?u=http://name.umdl.umich.edu/ACL9019.0001.001&

69. Value If The Hadamard-de La VallŽe-Poussin Constant As Explained
Value if the Hadamardde la VallŽe-Poussin constant as explained in a href= ahref= http//pauillac.inria.fr/algo/bsolve/hdmrd/hdmrd.html http//pauillac
http://pi.lacim.uqam.ca/piDATA/hadamard.txt

70. Cours D'analyse Infinitésimale, Par Ch.-J De La Vallée Poussin.
Cours d'analyse infinitésimale, par Ch.J de la Vallée Poussin. math Vol.1 lacking la Vallée Poussin, Charles Jean de, b. 1866. Charles Jean de, b. 1866. la Vallée Poussin
http://rdre1.inktomi.com/click?u=http://name.umdl.umich.edu/ACL9016.0001.001&

71. On The Gram Matrix Of Translates Of De La Vallée Poussin Kernels (ResearchIndex
Extending a result of A. A. Privalov we prove the diagonal dominance of the Gram matrix of bases of translates of de la Vall ee poussin kernels. This can be used to show the uniform boundedness of
http://citeseer.nj.nec.com/prestin95gram.html
(Make Corrections)
Jürgen Prestin, Kathi Selig
Home/Search
Context Related View or download:
math.unirostock.de/pub/
presel.ps.Z
math.muluebeck.de/pres
gramesti.ps.Z
Cached: PS.gz PS PDF DjVu ... Help
From: math.unirostock romako49.phtml (more)
(Enter author homepages)

Rate this article: (best)
Comment on this article
(Enter summary)
Abstract: . Extending a result of A. A. Privalov [2] we prove the diagonal dominance of the Gram matrix of bases of translates of de la Vall'ee poussin kernels. This can be used to show the uniform boundedness of a corresponding orthogonal projection operator. KEY WORDS. De la Vall'ee Poussin Kernels, Gram Matrix, Orthogonal Projection 1 Introduction In this note we investigate arithmetic means of Dirichlet kernels, namely the de la Vall'ee Poussin kernels for N;M 2 N and 1 M N , defined by ' M N (x) ... (Update) Active bibliography (related documents): More All On a constructive representation of an orthogonal.. - Prestin, Selig (1999) (Correct) ... (Correct) Similar documents based on text: More All Robust interpolation and approximation for A(D)-functions on.. - Torkhani (1996)

72. Vallée Poussin, Charles Jean Gustave Nicolas De La (1866-1962) -- From Eric Wei
Mathematicians. Nationality. Belgian. Vallée Poussin, Charles Jean Gustave Nicolas de la (18661962) Belgian mathematician who proved the prime number theorem independently of Hadamard in 1896. Additional biographies MacTutor (St.
http://scienceworld.wolfram.com/biography/ValleePoussin.html
Branch of Science Mathematicians Nationality Belgian
Belgian mathematician who proved the prime number theorem independently of Hadamard in 1896.
Additional biographies: MacTutor (St. Andrews)

73. AMCA: The De La Vallée Poussin Theorem For Vector Valued Measure Spaces By Mari
The de la Vallée Poussin Theorem for Vector Valued Measure Spaces of this paper is to extend the de la Vallée Poussin theorem to cabv(\mu, X), the space of
http://at.yorku.ca/cgi-bin/amca/cado-22
Atlas Mathematical Conference Abstracts Conferences Abstracts Organizers ... About AMCA Functional Analysis Valencia 2000
July 37, 2000
Technical University of Valencia (UPV) and University of Valencia (UV)
Valencia, Spain Organizers
R.M. Aron (Kent State U., USA), K.D. Bierstedt (U. Paderborn, Germany), J. Bonet (UPV), J. Cerdà (U. Barcelona, Spain), H. Jarchow (U. Zürich, Switzerland), M. Maestre (UV), J. Schmets (U. Liège, Belgium) View Abstracts
Conference Homepage
The de la Vallée Poussin Theorem for Vector Valued Measure Spaces
by
Universidad Politécnica de Valencia. Departamento de Matemática Aplicada Date received: November 18, 1999 Atlas Mathematical Conference Abstracts . Document # cado-22.

74. Charles De La Vallée Poussin > C'est Du Belge !

http://www.califice.net/belge/notes/poussin.shtml
Dates : Origine : belge Cours d'analyse. z Cours d'analyse (source SFRS)
Liens :
CATHOLIC ENCYCLOPEDIA: Charles-Louis-Joseph-Xavier de la Vallee Poussin
les insolites
tout le Web sur ce site
Homepage califice.net

75. La Boutique GeneaNet
boutique.geneanet.org/catalog/name.php?name=la%20VALLEEPOUSSIN Poussin type. pp. 1722.
http://boutique.geneanet.org/catalog/name.php?name=VALLEE POUSSIN

76. Wunder, Gerhard
Translate this page Crest-factor, PAPR, Nonlinear distortion, Power efficiency, Trigonometric polynomials,Multitone signals, Sampling series, vallee-Poussin polynomials, Optimal
http://edocs.tu-berlin.de/diss/2003/wunder_gerhard.htm
Wunder, Gerhard
A theoretical framework for the peak-to-average power control problem in OFDM transmission
Thesis
Filetyp: PDF (.pdf)
Size: 727 Kb
OFDM, Crest-factor, PAPR, Nonlinear distortion, Power efficiency, Trigonometric polynomials, Multitone signals, Sampling series, Vallee-Poussin polynomials, Optimal PAPR bounds, PAPR distribution, Chernoff bound, Coding, Trace codes, Spherical codes DCC-Sachgruppe
620 Ingenieurwissenschaften
Doctoral Dissertation accepted by: Technical University of Berlin , School of Electrical Engineering and Computer Sciences, 2003-09-04
Abstract Betreuer Boche, Holger; Prof. Dr Gutachter Boche, Holger; Prof. Dr Gutachter Upload: URL of Theses: http://edocs.tu-berlin.de/diss/2003/wunder_gerhard.pdf Technical University of Berlin, Library (Dissertation Office)
Strasse des 17. Juni 135, 10623 Berlin, Germany

77. Editura Herald - Bine Ati Venit!
Pret 85000Lei/0USD/0Euro. Brahmanismul de vallee POUSSIN. Titlu Brahmanismul . Autor/Traducator vallee POUSSIN. Colectie ESEURI. An aparitie 2002.
http://www.edituraherald.ro/books.asp?litera=B

78. A Comprehensive Introduction To Prime Numbers
This was only proved a hundred years later by Jacques Hadamard and Charlesde la valleePoussin after initial work by Pafnuty Chebyshev.
http://www.geocities.com/CapeCanaveral/Lab/3550/prime.htm
Prime numbers
by Dinoj Surendran
A prime number p is a positive integer (not 1) that is only divisible by 1 and p. The set of primes is therefore 2, 3, 5, 7, 11, .... Sometimes we consider negatives of primes (-2, -3, -5, ...) as primes as well, but not usually. Our entire system of arithmetic (addition and subtraction) rests on the prime numbers. In particular the theorem that every positive integer larger than one can be expressed as the product of a unique set of primes, eg 140 = 2 x 2 x 5 x 7, and there are no other primes which when multiplied together will give 140. An impeccable proof of this was given by the Greek mathematician Euclid If this (The Unique Prime Factorization Theorem) wasn't true, maths would be very different. The world would also be very different! The biggest problem with primes is that we don't know how to find them. What would be nice would be a polynomial (a formula of the form f(x) = a n x n + a n-1 x n-1 + ... + a x + a , eg x - 7) that gives us only prime numbers. No such polynomial exists. There are some other formulae that do give the nth prime, but they are far, far , FAR too cumbersome to be of any use. There are some polynomials that give several primes though, like this one (n +n+41), given on page 435 of ``Rama II'', by Arthur C. Clarke and Gentry Lee:

79. RR-2778 : Robust Interpolation And Approximation For ${A(\B{D})}$ Functions On
Translate this page KEY-WORDS POLYNOMIAL APPROXIMATION AND INTERPOlaTION / JACKSON AND de la VALLEEPOUSSIN POLYNOMIALS / ROBUST $H^\INFTY$ AND $H^2$ IdeNTIFICATION FROM
http://www.inria.fr/rrrt/rr-2778.html

Torkhani, Nabil
Rapport de recherche de l'INRIA- Sophia Antipolis Fichier PostScript / PostScript file (195 Ko) Fichier PDF / PDF file (404 Ko) Equipe : MIAOU 32 pages - Janvier 1996 - Document en anglais

80. Vacaroiu, Nicolae Romanian Polit.; Prime Min. Of Romania 1992
Hubert Prior vallee) US actor rock singer _19011986 vallee-Poussin, Charles Jeande la Belgian math.; proved prime number theorem independently of Jacques
http://world.std.com/obi/Biographical/biog_dict.v

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter