Geometry.Net - the online learning center
Home  - Scientists - D'oresme Nicole
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         D'oresme Nicole:     more books (18)
  1. Nicole Oresme: Étude D'historie Des Doctrines Et Des Économiques (French Edition) by Émile Bridrey, 2010-04-22
  2. Nicole d'Oresme: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  3. Traictie de la première invention des monnoies de Nicole Oresme: Textes français et latin d'après les manuscrits de la Bibliothèque impeériale, et Traité de la monnoie de Copernic (French Edition) by Nicole Oresme, 1864-01-01
  4. Le Livre Du Ciel et Du Monde by Nicole. Edited by A.D. Menut and A.J. Denomy Oresme, 1962-01-01
  5. Le Livre Du Ciel et Du Monde.Edited By Albert D. Menut and Alexander J. Denomy. by Nicole Oresme, 1968
  6. Maistre Nicole Oresme Le Livre Du Ciel Et Du Monde: Text and Commentary. by ALBERT D. & ALEXANDER J. DENOMY MENUT, 1941
  7. Le Livre de Ethiques d'Aristote. Published from the Text of MS. 2902, Bibliotheque Royale de Belgique, etc. by Nicole Oresme, 1940
  8. Le Livre Du Ciel et Du Monde by Nicole. Edited by A.D. Menut and A.J. Denomy Oresme, 1968
  9. Le Livre de Ethiques D'Aristote by Maistre Nicole (Albert D Menut ed) Oresme, 1940-01-01
  10. Le livre du ciel et du monde d'Aristotle. Translated by Maistre Nicole Oresme. Text and commentary Albert D. Menut and Alexander J. Denomy. by [ARISTOTLE], 1943
  11. Le livre de yconomique d'Aristote: Critical edition of the French text from the Avranches Manuscript with the original Latin version, introduction and ... of the American Philosophical Society) by Nicole Oresme, 1957
  12. Nicole Oresme: Highlights from His French Commentary on Aristotle's Politics by Albert D. Menut, 1979-11
  13. Autour de Nicole Oresme: Actes du Colloque Oresme (Bibliotheque d'histoire de la philosophie) (French Edition) by Jeannine Quillet (dir.), 1990
  14. Philosophe Du Xive Siècle: Dante Alighieri, Nicole Oresme, Ibn Khaldoun, Maître Eckhart, Guillaume D'ockham, Jean Duns Scot, Pierre D'ailly (French Edition)

61. MSN Encarta - Mathematics
The late Middle Ages saw some fruitful mathematical considerations ofinfinite series by French prelate nicole d’Oresme and others.
http://encarta.msn.com/encyclopedia_761578291_4/Mathematics.html
MSN Home My MSN Hotmail Shopping ... Money Web Search: logoImg('http://sc.msn.com'); Encarta Subscriber Sign In Help Home ... Upgrade to Encarta Premium Search Encarta Tasks Find in this article Print Preview Send us feedback Related Items Algebra Arithmetic more... Magazines Search the Encarta Magazine Center for magazine and news articles about this topic Further Reading Editors' Picks
Mathematics
News Search MSNBC for news about Mathematics Internet Search Search Encarta about Mathematics Search MSN for Web sites about Mathematics Also on Encarta Have sports records become unbreakable? Compare top online degrees Democrats vs. Republicans: What's the difference? Also on MSN Outdoor BBQ: Everything you need Quest for Columbus on Discovery Channel Switch to MSN in 3 easy steps Our Partners Capella University: Online degrees LearnitToday: Computer courses CollegeBound Network: ReadySetGo Kaplan Test Prep and Admissions Encyclopedia Article from Encarta Advertisement document.write(''); Page 4 of 6 Mathematics Multimedia 45 items Article Outline Introduction Mathematics: The Language of Science Branches of Mathematics History of Mathematics A Roman Mathematics The Alexandrian period of Greek civilization ended in 31 bc with Rome’s conquest of Egypt, the last of Alexander’s kingdoms. Roman orator

62. HTML Document For The World Wide Web
concept of natural motion in that impetus is not intrinsic to the object nor doesit produce motion in a particular direction (2) nicole d Oresme 13251382
http://www.wfu.edu/~hhardgra/scirev.htm
  • THE SCIENTIFIC REVOLUTION

63. Analyticka Geometrie
Za predchudce bývá považován nicole d Oresme (1323 1382), který vyjádrilv pojednání z rok De latitudinibus formarum geometricky rychlost v
http://www.math.muni.cz/~mlc/vyuka/M3521/uvod.html
Co je to analytická geometrie
Geometrii je mo¾no budovat dvìmi metodami: syntetickou a analytickou. Pøi syntetické metodì se pracuje pøímo s geometrickými objekty a mluví se o tzv. syntetické geometrii. Tímto zpùsobem pìstovali geometrii ji¾ Øekové ve starovìku, prvním pokusem o dùsledné axiomatické vybudování syntetické geometrie jsou Eukleidovy základy. Pøi analytické metodì jsou nejdøíve geometrické objekty charakterizovány èíselnými údaji a na základì práce s tìmito èíselnými údaji jsou pak vyvozovány geometrické vlastnosti daných objektù. Aèkoliv první pøedzvìst analytické metody lze najít také ji¾ ve starovìkém Øecku, v¹eobecnì kladou historikové matematiky zrod vlastní analytické geometrie teprve do 17. století. Tento zrod byl podmínìn dvìma dùle¾itými aspekty: zavedením jednoduché matematické symboliky a rozvojem algebry. Zjednodu¹enì by se dalo øíci, ¾e analytická geometrie je aplikací algebry na geometrii. Tuto aplikaci provedl v 1. pol. 17. stol. René Descartes a polo¾il tím základ k systematickém budování této disciplíny. Pøièem¾ na poèátku se úvahy analytické geometrie odehrávaly výhradnì na pùdì lineární algebry. 17. století je poèátkem dal¹í matematické disciplíny. V této dobì Newton a Leibnitz nezávisle na sobì objevili pojmy integrál a derivace. Vznikl tak diferenciální a integrální poèet, postupnì diferenciální a integrální rovnice, funkcionální analýza atd. tj. rozsáhlá matematická disciplína, kterou dnes nazýváme matematická analýza.

64. DEAF: Bibliographie
(entre 1372 et 1374); p. p. A. D. Menut, Maistre nicole d Oresme.
http://www.rzuser.uni-heidelberg.de/~dx9/bibl/html/bib99o.html
DEAF: Bibliographie
OED J. A. H. Murray, A new English dictionary on historical principles , 10 vol., Oxford (Clarendon) 1888-1928, Introduction, Supplement, and Bibliography , 1933; [= TL Murray Engl. Wb.; FEW NED et Documentation in the O. E. D. ..., Oxford (Clarendon) 1980. - La soi-disant 2 e OEDSh 1978 OEDSh 1993 The New Shorter Oxford English Dictionary on historical principles , 2 vol., Oxford (Clarendon) 1993. OLD e OakBookS Paxbre(a)d , auj. Oak Book e The Oak Book of Southampton, of c. A. D. 1300. Transcribed and edited from the unique ms. in the Audit House, with translation, introduction, notes, etc. OedeCourS e m. 13 e A Medieval Spanish word-list. A preliminary dated vocabulary of first appearances up to Berceo , Madison (Univ. of Wisconsin Press) 1940. OgDanE pic. 1 er t. 13 e s.; p. p. M. Eusebi, La chevalerie d'Ogier de Danemarche , Milano Varese (Istituto Edit. Cisalpino) 1963 (Testi e doc. lett. mod. 6); [= TL Chevalerie d'Ogier; Boss OgDanB id.; p. p. J. Barrois, Raimbert de Paris, La chevalerie Ogier de Danemarche

65. Utviklingslæren I Fokus
parsimoniloven. Prinsippet var nevnt før Ockham, bl.a. av Durand de SaintPourcainog av 1300-talls fysikeren nicole d Oresme. Sistnevnte
http://www.innsyn.com/artikler/evdel1.html

Del 1
Innledning

For over 700 år siden videreførte den engelske filosof og skolastiker William av Ockham (el. Occam, ca. 1285-1349), grunnleggeren av den såkalte "nominalisme" innenfor skolastikken, den ide at "enheter ikke må mangfoldiggjøres uten at det er nødvendig" ("non sunt multiplicande entia praeter neccesitatem"). Dette er den såkalte økonomiloven eller parsimoniloven. Prinsippet var nevnt før Ockham, bl.a. av Durand de Saint-Pourcain og av 1300-talls fysikeren Nicole d'Oresme. Sistnevnte tok økonomiloven i bruk slik Galileo senere gjorde for å forsvare verdensaltets enkleste forklaring eller hypotese. William av Ockham var imidlertid den som oftest kom inn på prinsippet, og anvendte det så skarpt at det ble kalt "Ockhams barberkniv". I moderne tid ble "Ockhams barberkniv" benyttet bl.a. av den østerrikske fysiker og filosof Ernst Mach (1838-1916). Han hevdet at ut fra dette prinsippet var vitenskapens mål og hensikt å framlegge de naturhistoriske fakta i de enkleste og mest økonomiske begrepsformuleringer. Eller sagt på en annen måte: Antall rimelige forklaringer på et fenomen må kuttes ned til det minimale, samtidig som de må være i harmoni med observerbare fakta og stadfestede naturlover. "Ockhams barberkniv" bør være et grunnprinsipp innenfor enhver vitenskapsgren.

66. Scientific Revolution Course Notes
nicole d Oresme (AD 1323 1382); Nicholas of Cusa (AD 1401 - 1464); JohannesRegiomontanus (AD 1436 - 1476) attempts to restore astronomy to its classical
http://research.amnh.org/users/wyatt/Hayden/revolution2002.html
SCIENTIFIC REVOLUTION COURSE NOTES
Fall 2002
Stephanie L. Parello (slap@amnh.org) 212.769.5905
Ryan Wyatt (wyatt@amnh.org) 212.313.7903
Last updated: 9 December 2003
I. What is a "scientific revolution"?
  • In an important sense, there has been only one scientific revolution, the Scientific Revolution:
    • Took place in the 16th and 17th Centuries, roughly Initial articulation of the scientific method
    However, the ideas we consider "revolutionary" occur much more frequently Thomas Kuhn's The Structure of Scientific Revolutions
    • Introduces the idea of a "paradigm shift" "To be accepted as a paradigm, a theory must seem better than its competitors, but it need not, and in fact never does, explain all the facts with which it can be confronted" Typically science proceeds incrementally, refining an existing paradigm, but occasionally, anomolies cause a reconsideration or a restructuring of the dominant paradigm
    Also, revolutions have social as well as scientific dimensions: This course will tackle the idea of revolutions from a social and scientific perspective. Along the way...
    • Question received knowledge about the functioning of science and the role of certain key characters Reveal flaws in our inherited mythology about science
    • Quote about falling weights sounds like Galileo, but it's not
  • 67. Scientific Revolution Course Notes
    nicole d Oresme (AD 1323 1382) questioned many of Aristotle s ideas he redefinedthe concepts of “time” and “position,” proposed idea of air
    http://research.amnh.org/users/wyatt/Hayden/revolution.html
    SCIENTIFIC REVOLUTION COURSE NOTES
    Winter 2004
    Ryan Wyatt ( wyatt@amnh.org
    Last updated: 21 February 2004
    This isn't quite the final version of the web page, but it adds a significant bit to what had been here earlier. First off, take a look at the first draft of the bibliography , which will receive more attention as soon as the rest of this page is done. Also, I wanted to direct your attention to a couple science timelines that I like: a fairly exhaustive one as well as a more terse, but easy-to-read synopsis that focuses more on physics and astronomy
  • In an important sense, there has been only one scientific revolution, the Scientific Revolution:
    • Took place from the 15th to the 18th Centuries, roughly Initial articulation of the scientific method
    Thomas Kuhn's The Structure of Scientific Revolutions
    • Typically science proceeds incrementally, refining an existing paradigm, but occasionally, anomolies cause a reconsideration or a restructuring of the dominant paradigm
    Also, revolutions have social as well as scientific dimensions:
  • 68. Famous Mathematicians With An O
    William of Ockham Georg Simon Ohm Kiyoshi Oka Olga Oleinik Theodore Olivier KhayyamOmar nicole d Oresme Wladyslaw Orlicz Juan de Ortega William Osgood Timofei
    http://www.famousmathematician.com/az/mathematician_O.htm
    Mathematicians - O
    William of Ockham
    Georg Simon Ohm
    Kiyoshi Oka
    Olga Oleinik
    Theodore Olivier
    Khayyam Omar
    Nicole d'Oresme
    Wladyslaw Orlicz
    Juan de Ortega
    William Osgood
    Timofei Osipovsky Mikhail Ostrogradski Alexander Ostrowski William Oughtred Jacques Ozanam Send mail to webmaster@famousmathematician.com with questions or comments about this web site. www.famousmathematician.com Last modified: January 20, 2003

    69. Famous Mathematicians With A D
    nicole d Oresme Leonardo da Vinci Germinal DandelinEgnatio Danti David van Dantzig George Dantzig Gaston Darboux George
    http://www.famousmathematician.com/az/mathematician_D.htm
    Mathematicians - D
    Jean d'Alembert
    Thompson W. Darcy
    Nicole d'Oresme
    Leonardo da Vinci

    Germinal Dandelin
    Egnatio Danti
    David van Dantzig
    George Dantzig
    Gaston Darboux
    George Darwin
    Zacharias Dase Ingrid Daubechies Harold Davenport August Davidov Evan Tom Davies Florimond de Beaune Bernard de Bessy Jacques de Billy Budan de Boislaurent Louis de Bougainville Louis duc de Broglie Pierre de Carcavi Gustave de Coriolis Charles de Coulomb Pierre de Fermat Bernard de Fontenelle Johannes de Groot Ernest de Jonquieres Charles de La Condamine Jan-Karel della Faille Philippe de La Hire Estienne de La Roche Thomas de Lagny Abraham de Moivre Pierre de Montmort Augustus de Morgan Gaspard de Prony Juan de Ortega de Rham Georges Gilles de Roberval Adhemar de St-Venant Willem de Sitter Rene de Sluze Joseph de Tilly D'Amondans de Tinseau Johan de Witt Josef de Wronski Claude Dechales Richard Dedekind Max Dehn Scipione del Ferro Richard Delamain Jean Baptiste Delambre

    70. Untitled Document
    Translate this page degrés d’être chez nicole Oresme”, Arabic Sciences and Philosophy, 8, 1998,45-65. p.123.- “Un aspect de l’ontologie d’Oresme l’équivocité de
    http://www.univ-lille3.fr/set/CONTRATpublications.html
    Bibliographie 1998-2001 Publications majeures P =ouvrages ou parties d'ouvrages ; p =articles) Blaise Fabienne p.1. - "La figure d'Eros dans la Théogonie d'Hésiode", Uranie 8, 1998, p. 51-62. p.2. - "Une polémique tragique : le second volet de l' Ajax de Sophocle", Revue des Études Grecques 112, 1999, p. 383-408. P.3. - Traduction de Wilhelm Dilthey, Conception du monde et analyse de l'homme depuis la Renaissance et la Réforme , Paris, Cerf (collection Passages ), 1999 (471 p.). Bollack Jean p.4. - "Le pouvoir politique d'Eros (Sophocle, Antigone , vers 781-800)", dans Figures d'Eros. Actes de la journée d'étude "Mythes et litteratures", 27 mai 1998 (Université Charles-de-Gaulle-Lille 3), Uranie 8, 1998, p. 63-70. p.5.- "La musique au bout du désert : une composition d’Euripide", Dédale 7-8, 1998, p. 343-355. P.6.- Jacob Bernays. Un homme entre deux mondes (introduction de Renate Schlesier), Lille, P.U.S., 1998, 120 p. p.7.- "Entwurf zu einem Verständnis von “ Radix, Matrix ”" (traduction du français par Werner Wögerbauer), Celan-Jahrbuch 7 (1997/1998), p. 89-94.

    71. Formes D¹articulation Entre Mathématiques Et Philosophie
    Translate this page Le statut des mathématiques chez nicole Oresme », Oriens Communication sur «L’Argumentation mathématique dans la physique d »Oresme », à la Table
    http://www.univ-lille3.fr/set/ACSabine2003.html
    Formes d¹articulation entre mathématiques
    et philosophie naturelle
    XIVe XVIe siècle)
    Projet de l’AC « Histoire des savoirs » dans le cadre du GDR 2522 « Philosophie de la connaissance et philosophie de la nature au Moyen Age et à la Renaissance » Responsable Sabine Rommevaux (CNRS UMR Savoirs et textes) Situation actuelle du sujet proposé a. Contexte et enjeux. L’enjeu de ce programme de recherches est d’étudier les relations entre certains domaines des mathématiques au Moyen Age et à la Renaissance, notamment la théorie des rapports et proportions, et certains aspects de la connaissance de la nature : théories du continu et de l’infini, théories du mouvement, mécanique. La période couverte va du début du xiv e siècle, avec les textes de Duns Scot sur le continu et le Traité des rapports de Thomas Bradwardine , jusqu’à la fin du xvi e siècle. Il s’agit de voir comment se nouent durant trois siècles des formes originales de mathématisation de certains phénomènes physiques, qui ne sont réductibles ni à la théorie aristotélicienne de l’abstraction, ni à la vision de la nature « écrite en langage mathématique ». De fait, la physique ne s’est vraiment autonomisée qu’au

    72. Science: History & Culture
    hours). A page from nicole d Oresme s Tractatus de latitudinibus formarum,(1505); Picture of geocentric model of the universe. Galileo
    http://www.cc.gla.ac.uk/courses/science/shc/shc2003.htm
    2003-2004 Level 1 Semester 2 Course Code: 6DXU
    SEE SCHEDULE BELOW FOR LATEST CHANGES What are the foundations of knowledge, and how reliable is what we believe? a level 1 core course, adopts an historical viewpoint and enrols philosophy and sociology to seek answers to these questions. Consisting of a series of lectures, self-study exercises and seminars, the course teaches not what to believe, but the bases of rational belief and informed judgement click on underlined links below to go to lecture notes or self-study page SELF-STUDY PAGES: Reasoned Thinking I Reasoned Thinking II Bibliography of Science Studies books
    CLASS SCHEDULE AND LINKS: WEEK LECTURE (2 x 1 hr per week) SEMINAR (usually 1 hr) INTRODUCTION
    week of 26 Jan 2004 1a. Overview
    b. Early sources of knowledge
    NO SEMINAR THIS WEEK
    week of 2 Feb From Greeks to monks
    Theories and personalities: the scientific revolution
    Elements of observation week of 9 Feb The scientific revolution II: winning hearts and minds
    Complexities of experiment
    week of 16 Feb Darwin's revolution
    4b. NO LECTURE

    73. Books : The Mechanization Of The World Picture: Pythagoras To Newton
    For example, how many students are aware of the contributions of earlier mathematiciansand scientists such as Nicholas of Cusa or nicole d Oresme?
    http://www.erraticimpact.com/cgi-bin/amazon_products_feed.pl?item_id=0691023964&

    74. What Is The Harmonic Series
    Around the same time, in 1350 to be exact nicole d’ Oresme was thefirst mathematician to use a graphical procedure for a proof.
    http://www.frc.mass.edu/smabrouk/calculus_III/History_Student_Web_Pages/Gardner_
    In order to begin understa nding what a harmonic series really is, we first need to understand an Infinite Series and a p-Series. To skip sections, click the hyperlinks below. Infinite Series P-Series What Is The Harmonic Series? History And Advancement of The Harmonic Series Infinite Series a n That is, is an infinite series. T he number a n is the “n th term in the series. Back To Top The p-Series The p-series takes the form where p is a real constant. The series converges when The series diverges when p and when (Prof. Mabrouk, classnotes 2002) Back To Top What is the Harmonic Series ? The Harmonic Series is the p-series where p=1: Since this is a p-series where p 1, the series will diverge. Want Proof? click here It is the most famous divergent series in mathematics! The divergence of the harmonic series is very slow-it takes the first 178,482,301 terms for the sum of the series to reach just approximately 20! The Harmonic Series’ divergence is very sensitive-if p = 1.000000001 then the series will converge (Thomas, p. 640—642)

    75. JRULM: Special Collections Guide: Mathematical Printed Collection
    in the collection include the 13thcentury redactor Johannes Campanus, with editionsfrom 1490 onwards; the Aristotelian scholar nicole D’Oresme, Bishop of
    http://rylibweb.man.ac.uk/data2/spcoll/maths/
    Library Home Special Collections Guide to the Collections
    MATHEMATICAL PRINTED COLLECTION
    1,000 items (dispersed). The Library has a wide range of printed works which chart the history of mathematics, from ancient times to the 19th century. All the eminent Greek mathematicians are represented in early or significant editions: Pythagoras, with two editions of Hierocles’ commentary on his Carmina Aurea , printed by Bartholomaeus de Valdezoccho (Padua, 1474) and Arnold Pannartz (Rome, 1475); Aristotle, with the first edition of the complete works in Greek (Aldus, Venice, 1495-98); Euclid, with copies of the first edition of the Elements , printed by Ratdolt in a Latin translation (Venice, 1482), the first edition of the Greek text printed by Hervagius (Basel, 1533), and the first English translation by Sir Henry Billingsley (1570); and Archimedes, with the first edition by Hervagius (Basel, 1544). Boethius made Latin redactions of a number of Greek scientific writings in around 500 AD. The Library has over fifty editions of his works, the earliest being the De Consolatione Philosophiae (Savigliano, 1470).

    76. Giordano Bruno "martire Della Scienza"?
    Translate this page formulata dai filosofi e teologi scolastici francesi Jean Buridan, italianizzatoin Giovanni Buridano (1300 ca.-1360 ca.), e nicole d’Oresme (1323-1382
    http://www.kattoliko.it/leggendanera/inquisizione/jaki_bruno.htm
    Sezione Inquisizione torna
    Giordano Bruno "martire della scienza"?
    Intervista a cura di Cosimo Baldaro e Cosimo Galasso n. 299 (2000) Il 16 febbraio 2000, presso il Liceo Classico Antonio Calamo di Ostuni, in provincia di Brindisi, in collaborazione con il preside, professor Francesco Masciopinto, Alleanza Cattolica ha organizzato una conferenza — con annuncio e con eco sui mass media locali — sul tema , relatore il professor Stanley L. Jaki O.S.B., cosmologo e storico della scienza, insignito nel 1970 del premio Lecomte du Nouy e nel 1987 del premio Templeton per la Religione. ristampata nel 1963 grazie al rinnovato interesse per l’argomento dovuto al Concilio Ecumenico Vaticano II (1962-1965) allora in pieno svolgimento. Fra i suoi numerosi titoli accademici sono da menzionare lauree honoris causa in Filosofia, in Matematica e in Lettere. Le strade della scienza e le vie verso Dio (Jaca Book, Milano 1988), Dio e i cosmologi Fede, scienza e falsi miti nella cosmologia contemporanea , in , anno XXI, n. 224, dicembre 1993, pp. 17-25)

    77. Helicon Publishing: Data Sets And Samples: Business And Economy Resources: Sampl
    c. 1382 The French scholar nicole d Oresme publishes De moneta/OnMoney. One of the earliest European treatises on currency, it
    http://www.helicon.co.uk/online/datasets/samples/business/chronologies.htm
    E-mail us at helicon@rm.com or telephone us on 08709 200200. Looking for help with one of our CD-ROM products? Visit our technical support section.
    Data sets and samples
    Subjects Fact sheet Samples
    Business and economy resources: Sample chronology
    Economic theory
    Qudama ibn-Ja'far writes the Kitab al- Kharaj , an account of the Islamic taxation system. Richard FitzNigel writes his Dialogus de Scaccario , a description of the English Exchequer. c. The French scholar Nicole d'Oresme publishes De moneta/On Money . One of the earliest European treatises on currency, it greatly influences Medieval economic thinking. The French writer on economics Victor de Riqueti, marquis de Mirabeau, publishes The Theory of Taxation The English philosopher Jeremy Bentham publishes his Defence of Usury , setting out his views on economics. The British home secretary, Lord Liverpool, publishes his Treatise on the Coins of the Realm in which he calls for a real money policy, where the amount of money in circulation corresponds to its true value in gold. The US statesman James Madison publishes An Examination of the British Doctrine which Subjects to Capture a Neutral Trade not Open in Time of Peace The Scottish philosopher James Mill publishes Elements of Political Economy The German political writer Friedrich Engels publishes Die Lage der arbeitenden Klasse in England The Condition of the Working Classes in England , a classic of communism.

    78. NodeWorks - Philosophy: Philosophers: Oresme, Nicholas
    Nicholas Oresme (nicole Oresme, nicole d Oresme), 13231383. Medieval theologianand philosopher, a critic of Aristotelianism. He was a pupil of Buridan.
    http://dir.nodeworks.com/Society/Philosophy/Philosophers/O/Oresme,_Nicholas/
    in entire NodeWorks Directory in Society in Philosophy in Philosophers in O in ++ Oresme, Nicholas Top Society Philosophy Philosophers ... O Oresme, Nicholas Nicholas Oresme (Nicole Oresme, Nicole d'Oresme), 1323-1383. Medieval theologian and philosopher , a critic of Aristotelianism. He was a pupil of Buridan Catholic Encyclopedia: Nicole Oresme Article by Pierre Duhem on this medieval scientific thinker. History of Calculus: Oresme, Nicole Concise biography with a note on his mathematical contributions. On the Book of the Heavens and the World of Aristotle An excerpt from the Menut and Denomy translation of Oresme's commentary on De Caelo. Oresme Biography of this 14th-century scholar, from the MacTutor History of Mathematics. Includes bibliography. World of Scientific Biography: Oresme, Nicole A brief note on this scholar's scientific writings.
    NodeWorks boosts web surfing! Page Returned in seconds - HTML Compressed Help build the largest human-edited directory on the web. Submit a Site Update a Site Open Directory Project Become an Editor

    79. American Enterprise: False Conflict: Christianity Is Not Only Compatible With Sc
    learning. Scholastics such as lean Buridan and nicole d Oresme rejectedmany erroneous claims made by classical writers. Albertus
    http://www.findarticles.com/cf_dls/m2185/7_14/109668527/p2/article.jhtml?term=

    80. ... én Mégis Egy Könyvet írtam
    Az idézetek valójában sokkal korábbiak az egyik nicole d Oresme püspöktôlszármazik 1350 táján, tehát 300 évvel koráóbi
    http://www.chemonet.hu/hun/olvaso/histchem/simonyi/galilei.html
    (GALILEI, KEPLER) Dialogo A Dialogo Dialogo 1610-ben megjelenik a
    A kopernikuszi rendszer igazságát (Kepler szerint) mint magától értetôdô tényt kell elfogadni, nem kell sok száz oldalon nagy ravaszsággal igazolni. Érdekességként még megemlítjük, hogy egy olyan ifjú titán, mint amilyen ebben az idôben Descartes volt, járt Itáliában, de semmi jele, hogy igyekezett volna Galileit felkeresni, hogy lerója nála tiszteletét; sôt azt írja Galilei könyvérôl: "Beleolvastam, úgy látom, jól filozofál, de azt is látom, hogy nem követi mindig a legrövidebb utat, és megállapításaihoz nem kell valami nagy geométernek lenni." Nem is olvasta végig Descartes a könyvet, mert unta. a b a b b mozog, viszont ha a b a b mozog. Itt a Föld mozgása melletti érvek hangzanak el, és a vájt fülûek azt is észreveszik, hogy az érvelés a késôbbi Galilei-féle relativitás elvét használja, tehát az idôpont 1600 körüli év, a szerzô minden bizonnyal maga Galilei. Az idézetek valójában sokkal korábbiak: az egyik Nicole d'Oresme püspöktôl származik 1350 táján, tehát 300 évvel koráóbi... A másik Cusanustól való, a "bíboros és eretnek"-tôl, ahogy Vas István egyik versében nevezi, úgy 200 évvel Galilei elôtt vélekedett így.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter