Geometry.Net - the online learning center
Home  - Scientists - Ceva Giovanni
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Ceva Giovanni:     more books (18)
  1. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-05-23
  2. Geometria Motus: Opvscvlvm Geometricvm (Czech Edition) by Giovanni Ceva, 2010-01-10
  3. Giovanni Ceva: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  4. 1734 Deaths: Georg Ernst Stahl, Giovanni Ceva, John Barrington, 1st Viscount Barrington, Peter Tillemans, Marie-Joseph Angélique
  5. Mathematician Introduction: Grigory Barenblatt, Ivan Vidav, Lorenzo Mascheroni, Vladimir Batagelj, Matevz Bren, Giovanni Ceva, Chris Freiling
  6. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-09-10
  7. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-09-10
  8. Decameron. by Giovanni Boccaccio. Introduction by Mario Marti. Notes by Elena Ceva Valla.. by Giovanni Boccaccio, 1979
  9. Geometria motus by Giovanni. Ceva, 1692-01-01
  10. Giovanni Benedetto Ceva Matematico Cesareo by fabio mercanti, 2004-01-01
  11. Memorie Storiche Della Città E Marchesato Di Ceva (Italian Edition) by Giovanni Olivero, 2010-02-12

41. Ceva's Theorem: A Matter Of Appreciation
being appreciated. A worthy goal to strive to. An elegant theoremhas been published by giovanni ceva in 1678. Dan Pedoe remarks
http://www.cut-the-knot.org/Generalization/CevaPlus.shtml
CTK Exchange Front Page
Movie shortcuts

Personal info
...
Recommend this site
Cut The Knot!
An interactive column using Java applets
by Alex Bogomolny
A Matter of Appreciation
October 1999 I have a recollection. Years ago, a childhood friend of mine, Boris, shared with me with excitement an unusual experience he had on a visit to the Tretj'yakov Art Gallery in Moscow. He was accompanied by a professional painter, a good acquaintance of his older sister. While Boris was making a round in one of the halls, he observed that the painter remained all that time on the same spot studying a certain picture. Curious, my friend asked the painter what was it about the picture that kept him interested in it for so long. According to Boris, the painter did not reply directly, but, instead, stepped over to the picture and covered a spot on the picture with a palm of his hand. "Have a look at the picture and think of what you see," he requested. After a while, he uncovered the spot, stepped back and asked Boris to have another look. Well, almost 4 decades later, with the names of the painter and the picture long forgotten, I still vividly remember Boris' excitement when he told me of how entirely different, deeper and more beautiful, the picture appeared to him then.

42. Ceva's Theorem
ceva s Theorem. giovanni ceva (16481734) proved a theorem bearinghis name that is seldom mentioned in Elementary Geometry courses.
http://www.cut-the-knot.org/Generalization/ceva.shtml
CTK Exchange Front Page
Movie shortcuts

Personal info
...
Recommend this site
Ceva's Theorem
Giovanni Ceva (1648-1734) proved a theorem bearing his name that is seldom mentioned in Elementary Geometry courses. It's a regrettable fact because not only it unifies several other more fortunate statements but its proof is actually as simple as that of the less general theorems. Additionally, the general approach affords, as is often the case, rich grounds for further meaningful explorations.
Ceva's Theorem
In a triangle ABC, three lines AD, BE and CF intersect at a single point K if and only if (The lines that meet at a point are said to be concurrent
Proof 1
Extend the lines BE and CF beyond the triangle until they meet GH, the line through A parallel to BC. There are several pairs of similar triangles: AHF and BCF, AEG and BCE, AGK and BDK, CDK and AHK. From these and in that order we derive the following proportions:
  • AF/FB=AH/BC (*)
  • CE/EA=BC/AG (*)
  • AG/BD=AK/DK
  • AH/DC=AK/DK from the last two we conclude that AG/BD = AH/DC and, hence, BD/DC = AG/AH (*).
  • 43. Trisectrice De Ceva
    Translate this page giovanni ceva (1648-1734) mathématicien et ingénieur italien. Cas particulierde sectrice de ceva. Équation polaire . Équation cartésienne .
    http://www.mathcurve.com/courbes2d/trisectricedeceva/trisectricedeceva.shtml
    courbe suivante courbes 2D courbes 3D surfaces ... fractals TRISECTRICE DE CEVA
    Ceva's trisectrix, Cevasche trisektrix
    Cas particulier de sectrice de Ceva.
    Sextique
    circulaire Un cercle ( C ) de centre O et de rayon a et une droite ( D ) passant par O D ) est ici Ox M tels que OP PQ QM avec P sur ( C Q sur ( D ) et tels que O P et M
    L'angle xQM est le triple de l'angle xOM Cette courbe est aussi une du
    courbe suivante
    courbes 2D courbes 3D surfaces ... fractals , Jacques MANDONNET

    44. Teorema De Ceva
    Translate this page Los segmentos AX, BY y CZ se denominan cevianas, término que procededel matemático italiano giovanni ceva (1647-1734). Aquí
    http://www.ctv.es/USERS/pacoga/bella/htm/ceva.htm
    BELLA GEOMETRIA Teorema de Ceva
    Sean X Y Z puntos de los lados BC CA y AB ABC . Los segmentos AX BY y CZ se denominan cevianas El teorema de Ceva afirma: Si las tres cevianas AX BY y CZ son concurrentes, entonces AX BY y CX se cortan en un punto P Entonces De la misma forma, se obtiene que Multiplicando, Supongamos que las tres cevianas AX BY y CZ cumplen
    Entonces las tres cevianas son concurrentes. el teorema de Menelao
    Francisco Javier García Capitán, 2000.
    pacoga@ctv.es
    var logDomain = 'www.telepolis.com'; var logChannel = 'miweb'; var logPath = 'control_ctv';

    45. List Of Mathematical Topics - Reference Library
    extension Centralizer and normalizer Centillion Centroid Cepstrum Cesaro, Ernesto Ceulen, Ludolph van ceva, giovanni ceva s Theorem
    http://www.campusprogram.com/reference/en/wikipedia/l/li/list_of_mathematical_to
    Reference Library: Encyclopedia
    Main Page
    See live article Alphabetical index
    List of mathematical topics
    These pages collect pointers to all Wikipedia articles related to Mathematics . Everything remotely connected to mathematics, including articles about mathematicians, should be listed here. (For a much nicer list of mathematicians, see list of mathematicians .) The list is not necessarily complete or up to date - if you see an article that should be here but isn't (or one that shouldn't be here but is), please do update the page accordingly. The main purpose of these pages is to make it easy for those interested in the subject to monitor changes to these pages. You can use the following links:
    Recent changes in mathematics articles, A-C Recent changes in mathematics articles, D-F Recent changes in mathematics articles, G-I Recent changes in mathematics articles, J-L Recent changes in mathematics articles, M-O Recent changes in mathematics articles, P-R Recent changes in mathematics articles, S-U Recent changes in mathematics articles, V-Z
    A WikiProject is being developed at Wikipedia:WikiProject Mathematics regarding issues of form, structure and notation for mathematics articles. Check it out!

    46. Ceva's Theorem
    That is Who is giovanni ceva? The usual proof of ceva s Theorem involvesconsideration of similar triangles in the augmented figure below.
    http://jwilson.coe.uga.edu/Texts.Folder/ratio/Ceva.html
    Ceva's Theorem
    by
    Jim Wilson
    Given any triangle ABC with a point M in the interior. Segments through M from each vertex to the opposite sides of the triangle are Cevians and Ceva's theorem says that the product of the ratios of the pairs of segments formed on each side of the triangle by the intersection point is equal to 1, where the ratios are taken in same orientation on each side. Further, if the ratio formed by any three Cevians is equal to 1, then the three Cevians are concurrent.
    That is:
    Who is Giovanni Ceva The usual proof of Ceva's Theorem involves consideration of similar triangles in the augmented figure below.
    Return to the discussion

    47. Essay 1 A Look At Ceva S Theorem
    Essay 1 A Look at ceva s Theorem. by Anita Hoskins and Crystal Martin.ceva s Theorem was discovered by and named for giovanni ceva.
    http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Martin/essays/essay1.html
    Essay 1: A Look at Ceva's Theorem by Anita Hoskins and Crystal Martin Ceva's Theorem was discovered by and named for Giovanni Ceva Ceva's Theorem states: Given any triangle ABC, the segments from A, B, and C to the opposite sides of the triangle are concurrent precisely when the product of the ratios of the pairs of segments formed on each side of the triangle is equal to 1. The theorem is easier to understand if you look at the following picture (Figure 1). AB, BC, and CA are concurrent if AF/FB*BD/DC*CE/EA=1. The converse is also true. If AF/FB*BD/DC*CE/EA=1 then AB, BC, and CA are concurrent.
    Figure 1 Because of Ceva's Theorem, the lines joining a vertex of a triangle with a point on the opposite side (AB, BC, and CA) are known as Cevians (Bogmolny). Although Figure 1 only shows Cevians that lie inside the triangle, Ceva's theorem is still true when the Cevians do not all lie in the interior of the triangle. While many people have never heard of Ceva's theorem, most people have seen examples of Cevians somewhere in geometry. For example, the

    48. TEOREMA DE CEVA
    ABC. Els segments AX, BY y CZ es denominen cevianes , terme que procedeixdel matemàtic italià giovanni ceva (16471734). Aquí
    http://www.xtec.es/~jdomen28/teoremadeceva.htm
    TEOREMA DE CEVA
    Les rectes que uneixen els vèrtex d´un triangle amb un punt dels seu pla, determinen sobre els costats sis segments de tal manera que la raó del producte de tres d´ells sense extrems comuns, al producte dels altres tres, és igual a -1.
    Siguin X Y Z punts dels costats BC CA i AB respectivament d´un triangle ABC . Els segments AX BY y CZ es denominen "cevianes" , terme que procedeix del matemàtic italià Giovanni Ceva (1647-1734).
    Aquí, podem veure tres " cevianes " d´un triangle cumplint el teorema de Ceva. El teorema de Ceva afirma: Si les tres "cevianes" AX BY y CZ són concurrents, aleshores
    Demostració del teorema La següent demostració es basa en que les àrees dels triangles amb altures iguals són proporcionals a les bases dels triangles. Suposem que las tres "cevianes" AX BY i CX es tallen en un punt P Aleshores
    De la mateixa manera, s´obté que

    49. Comune Di Sale San Giovanni - Italia: Informazioni
    Translate this page sulla scheda del comune di Sale San giovanni, inviaci un email. Uzzone, Castellinaldo,Castellino Tanaro, Castelmagno, Castelnuovo di ceva, Castiglione Falletto
    http://www.comuni-italiani.it/004/200/
    Comune di Sale San Giovanni (Regione Piemonte). Numero abitanti, CAP, notizie, alberghi, previsioni meteo e link. Comune di Sale San Giovanni Dove Regione Piemonte Provincia Cuneo (CN) Zona Italia Nord Occidentale Popolazione Residente Totale Densità per Kmq Maschi Femmine Varie Num. Famiglie Num. Abitazioni Denominazione Abitanti salesi Utili Link Previsioni Meteo Telefono e Sindaco Uffici Postali Codici CAP Prefisso Telefonico Codice Istat Codice Fisco Extra Pagine Utili Lista Comuni Provincia di Cuneo Lista di tutti i Comuni Per segnalare aggiunte o correzioni da effettuare sulla scheda
    del comune di Sale San Giovanni, inviaci un email Cerchi nuove opportunità?
    Offerte Lavoro
    Per le tue Vacanze in Campagna:
    Agriturismo Italia
    Prenotazione Alberghi e Hotel
    Gulliver-World
    Comuni-Italiani.it Prometheo Note sui Dati Altri comuni della Provincia di Cuneo: Acceglio Aisone Alba Albaretto della Torre ... Vottignasco

    50. Menelaus And Ceva
    This alternate version of the relativistic speed composition law was discoveredby the Italian geometer giovanni ceva in 1678. (Considering
    http://www.mathpages.com/home/kmath442/kmath442.htm
    Menelaus and Ceva Menelaus of Alexandria (circa 100 AD) was among the first to clearly recognize geodesics on a curved surface as the natural analogs of straight lines on a flat plane.  Earlier mathematicians had considered figures on a spherical surface, but it was Menelaus who had the insight to construct a complete geometry of the sphere with great circle arcs taking the place of line segments.  For example, he defined "spherical triangles" as figures comprised of three great circle arcs, and developed a family of trigonometric relations for such figures.  The most famous of these is still known as Menelaus' Theorem, although it's commonly presented only in the planar version (which was probably known to Euclid ).  In this form the theorem gives the necessary and sufficient condition for three points on the extended edges of a plane triangle to be co-linear.  Consider the triangle shown below Letting [xy] denote the distance between points x and y, the Theorem of Menelaus states that the points a,b,c located on the (extended) edges BC, AC, AB of a triangle ABC are colinear if and only if To prove this, consider a rectangular coordinate system xy with respect to which the coordinates of the vertices A,B, and C are (0,0), (

    51. Ceva's Trisectrix
    giovanni ceva (16481734), an Italian mathematician and engineer, studiedthe curve for b=2. This was in origin ceva s trisectrix.
    http://www.2dcurves.com/sextic/sextict.html
    (extended) Ceva's trisectrix
    sextic
    last updated: This sextic is a botanic curve Giovanni Ceva (1648-1734), an Italian mathematician and engineer, studied the curve for b=2. This was in origin Ceva's trisectrix
    The curve can be written as r = sin3 f /sin f.
    The trisectrix can be extended to other values for b.
    Ceva's trisectrix can be used for the trisection of an angle, as follows (see picture to the right).
    Let there be a circle C with center O. Draw a line through O which cuts C in P.
    Construct a point Q on the x-axis so that OP = PQ.
    Then Ceva's trisectrix is the collection of points M for which:
    • M lies on the line through OP MP = PQ
    Now the angle OQM is three times the angle QOM.
    For b = 1/2, the curve is called the peanut curve
    For b = 1, the curve is called the double egg
    Its equation can also be written as: r = cos f.
    Some examples: For large values of parameter b, the curve approximates the quadrifolium rhodonea c=2). notes 1) Cartesian equation: (x + y = ((b+1)x - (b-1)y

    52. Seznam Matematických Témat
    rozšírení Centralizer a normalizer Centillion Centroid Cepstrum Cesaro, Ernesto Ceulen, Ludolph dodávka ceva, giovanni ceva je
    http://wikipedia.infostar.cz/l/li/list_of_mathematical_topics.html
    švodn­ str¡nka Tato str¡nka v origin¡le
    Seznam matematick½ch t©mat
    Tyto strany sb­raj­ ukazatele na vÅ¡echny Wikipedia čl¡nky vztahovaly se k Matematika . VÅ¡echno vzd¡leně spojen½ s matematikou, včetně čl¡nků o matematic­ch, should b½t vyps¡n tady. (pro mnohem hezč­ seznam matematiků, vidět seznam matematiků .) Seznam nen­ nutně kompletn­ nebo až po dobu - jestliže vy se setk¡te s bodem, kter½ by měl b½t tady ale je ne (nebo jeden to by nemělo b½t tady ale je), pros­m dělat aktualizaci stranu společně. Hlavn­ c­l těchto stran m¡ dorazit do toho snadn½ pro ty zaujat½ podř­zen½m monitorov½m změn¡m na tyto strany. Vy můžete použ­vat n¡sleduj­c­ spojen­:
    Ned¡vn© změny v matematice čl¡nky,-C Ned¡vn© změny v matematice čl¡nky, D-F Ned¡vn© změny v matematice čl¡nky, G-j¡ Ned¡vn© změny v matematice čl¡nky, J-L Ned¡vn© změny v matematice čl¡nky, M-O Ned¡vn© změny v matematice čl¡nky, P-R Ned¡vn© změny v matematice čl¡nky, S-U Ned¡vn© změny v matematice čl¡nky, V-Z

    53. Ceva_thm
    The theorem is named for giovanni ceva, an Italian mathematicianwho lived from 1648 to 1734. The lines from each vertex to the
    http://www.pballew.net/ceva_thm.html
    Ceva's Theorem Ceva's Theorem states that if three lines are drawn in a triangle from each vertex to the opposite sides (AA', BB', and CC' in the figure) they intersect in a single point if, and only if, the sides are divided into parts so that :    The theorem is named for Giovanni Ceva, an Italian mathematician who lived from 1648 to 1734.  The lines from each vertex to the opposite side are often called Cevians in his honor.  You can find a biography of Ceva at the St. Andrews University web site. This theorem makes some of the geometric proofs  of concurrency almost trivial corollarys .   The medians, for example, divide each side into a 1:1 ratio, so that all three of the ratios in the formula equal 1, and therefore have a product of one.  It is almost as easy to prove the angle bisectors meet in a single point with Ceva's theorem. Here you can find a clever javascript proof of Ceva's Thm that requires nothing beyond middle school geometry formulas. There is a second simple identity that is known, but not WELL known. Let three cevians be drawn from the vertices (A, B, and C)through a common point, P, and intersecting the opposite sides (perhaps extended) at A', B', and C' as in the figure. Then for the points as described, it is true that AP/AA' + BP/BB' + CP/CC' = 2 . I was first exposed to this pretty little property in a note to the MathForum Geometry discussion list by the Greek Mathematician Antreas P. Hatzipolakis. I recently learned on one of the geometry discussion lists at the Math Forum that the Cevian is also used in 3-D for the segment from a vertex of a tetrahedron to the opposite face (possibly extended). In the same thread I had speculated that I thought the property above would extend to the tetrahedron as well with a sum of the ratios equal to three. Eisso J Atzema of The University of Maine confirmed my belief with a simple proof that extended from triangles to any N-dimensional simplex. I quote directly from his post:

    54. Historia Matematica Mailing List Archive: Re: [HM] How Did Ceva Rediscover Menel
    The resource is ceva, giovanni De lineis rectis se invicem secantibus staticaconstructio. Mediolan., 1678. G Loria Per la biografia de giovanni ceva.
    http://sunsite.utk.edu/math_archives/.http/hypermail/historia/jun99/0039.html
    Re: [HM] How did Ceva rediscover Menelaus's theorem?
    Antreas P. Hatzipolakis xpolakis@otenet.gr
    Mon, 7 Jun 1999 23:36:23 +0300 (EET DST)
    Mikio Miyazaki wrote:
    The resource is:
    Ceva, Giovanni: De lineis rectis se invicem secantibus statica constructio.
    Mediolan., 1678
    but I know of no translation into a modern language.
    There is a biography for GC by Gino Loria, which might be of some help,
    but I haven't seen it:
    G Loria: Per la biografia de Giovanni Ceva.
    Rendiconti dell'istituto lombardo di scienze et lettere 48(1915) 450-452.
    Antreas

    55. Teorema Di G. Ceva E Conseguenze
    giovanni ceva (Milano 1647-Mantova 1734) e pubblicato da questi nel 1678.
    http://www.lorenzoroi.net/geometria/Ceva.html
    Il teorema di G. Ceva e le sue conseguenze
    In questa pagina trattiamo di un teorema che fornisce una importante condizione sulla concorrenza di tre segmenti in uno stesso punto. In base ad esso si possono ritrovare risultati già noti della geometria elementare ma collocandoli in un ambito più generale. Dopo aver ripreso i teoremi sulla bisettrice di un angolo (sia interno che esterno), il teorema metrico di Stewart, dimostrato per mezzo del teorema trigonometrico di Carnot, permette di individuare la relazione che intercorre tra due lati di un triangolo e le parti in cui il terzo viene suddiviso da un qualsiasi "ceviano".
    Il teorema di Ceva
    Iniziamo con due definizioni
    Definizione 1. Definizione 2.
    Tre rette o segmenti sono concorrenti se passano per lo stesso punto.
    In base a queste posizioni, se P Q R sono punti appartenenti rispettivamente ai lati AB BC CA del ABC , i segmenti AQ BR e CP sono ceviani. In particolare nella figura 1 i tre segmenti sono stati disegnati concorrenti nello stesso punto S , intersezione di AQ e BR (di conseguenza, solo i vertici del triangolo e i punti

    56. Re: Fwd: History By Samuel S. Kutler
    Katalog des SWB De lineis rectis se invicem secantibus statica constructio / Johannesceva Autor/Herausgeber ceva, giovanni Veröffentlicht Mediolan
    http://mathforum.org/epigone/math-history-list/hayglookhee/v01540b00b2db236c95f3
    Re: Fwd: History by Samuel S. Kutler
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to math-history-list
    Subject: Re: Fwd: History Author: s-kutler@sjca.edu Date: http://www-history.mcs.st-andrews.ac.uk/history//Mathematicians/Ceva_Giovann The Math Forum

    57. Re: Fwd: History By Antreas P. Hatzipolakis
    im Katalog des SWB De lineis rectis se invicem secantibus statica constructio/ Johannes ceva Autor/Herausgeber ceva, giovanni Veröffentlicht Mediolan
    http://mathforum.org/epigone/math-history-list/hayglookhee/v01540B04B2DB5D6A130F
    Re: Fwd: History by Antreas P. Hatzipolakis
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to math-history-list
    Subject: Re: Fwd: History Author: xpolakis@otenet.gr Date: http://www-history.mcs.st-andrews.ac.uk/history//Mathematicians/Ceva_Giovann i.html On his theorem: Besides the well-known proof (with similar triangles. Was it Ceva's himself?) F.G. M. lists two more. [one of them is by Monsellut (1901)] The term "ceviennes" was proposed by Poulain (1888) Reference: F.G. - M.: Exercices de geometrie comprenant. Paragraphs: 167 and 1240 Antreas New email address: xpolakis@OTENET.GR The Math Forum

    58. Biografisk Register
    Translate this page se Descartes) Cauchy, Augustin L. (1789-1857) Cavalieri, Bonaventura (1598-1647)Cayley, Arthur (1821-95) ceva, giovanni (1647-1734) Chatelet, Gabrielle
    http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm
    Biografisk register
    Matematikerne er ordnet alfabetisk på bakgrunn av etternavn. Linker angir at personen har en egen artikkel her. Fødsels- og dødsår oppgis der dette har vært tilgjengelig.
    Abel, Niels Henrik
    Abu Kamil (ca. 850-930)
    Ackermann, Wilhelm (1896-1962)
    Adelard fra Bath (1075-1160)
    Agnesi, Maria G. (1718-99)
    al-Karaji (rundt 1000)
    al-Khwarizmi, Abu Abd-Allah Ibn Musa (ca. 790-850)
    Anaximander (610-547 f.Kr.)
    Apollonis fra Perga (ca. 262-190 f.Kr.)
    Appel, Kenneth
    Archytas fra Taras (ca. 428-350 f.Kr.) Argand, Jean Robert (1768-1822) Aristoteles (384-322 f.Kr.) Arkimedes (287-212 f.Kr.) Arnauld, Antoine (1612-94) Aryabhata (476-550) Aschbacher, Michael Babbage, Charles (1792-1871) Bachmann, Paul Gustav (1837-1920) Bacon, Francis (1561-1626) Baker, Alan (1939-) Ball, Walter W. R. (1892-1945) Banach, Stéfan (1892-1945) Banneker, Benjamin Berkeley, George (1658-1753) Bernoulli, Jacques (1654-1705) Bernoulli, Jean (1667-1748) Bernstein, Felix (1878-1956) Bertrand, Joseph Louis Francois (1822-1900) Bharati Krsna Tirthaji, Sri (1884-1960)

    59. Loodus- Ja Täppisteadlaste Eluaastaid
    Celsius, Anders (17011744) (SWE füüsik ja astronoom) Cesaro, Ernesto (1859-1906)(matemaatik) ceva, giovanni (1647-1734) (matemaatik) Chadwick, James (1891
    http://www.physic.ut.ee/~janro/

    A
    B C D ... Y A
    Abbe, Ernst
    Abbot, Charles Greeley
    Abel, Niels Henrik (1802-1829) (NOR matemaatik)
    Abelson, Philip Hauge
    Abraham, Max
    Abrikossov, Aleksei A.
    Adams, John Couch (1819-1892) (GBR astronoom)
    Aepinus, Franz Ulrich Theodor
    Agnesi, Maira Gaetana (1718-1799) (matemaatik) d'Alembert, Jean Baptiste Le Round (1717-1783) (FRA filosoof ja matemaatik) Amontons, Guillaume Ampére, André Marie Anaxagoras Anaximandros Anaximenes Apollonios, Pergest (~260-~170 e.m.a.) (kreeka matemaatik) Arago, Dominique Francois Aragon Armand Archimedes Aristarchos (320-250 e.m.a.) Aristoteles Arzela, Cesare (1847-1912) (matemaatik) Tagasi algusesse / Up B Babinet, Jacques Bacon, Roger (1214-1294) (inglise filosoof ja looduseuurija) Baire, Louis René (1874-1932) (matemaatik) Banach, Stefan (1892-1945) (POL matemaatik) Barrow, Isaac Bartels, Johann Martin Christian (1769-1836) (matemaatik) Bartholinus, Erasmus (1625-1698) (DEN loodusteadlane) Bateman, Harry (1882-1946) (matemaatik) Bayes, Thomas (1702-1761) (GBR matemaatik) Becquerel, Antoine Henri Bell, Alexander Graham

    60. Confartigianato - Cuneo - Zona Di Ceva
    Translate this page Caprauna. Castellino Tanaro. Castelnuovo di ceva. ceva. Garessio. Gottasecca. Igliano. Roascio.Sale delle Langhe. Sale San giovanni. Saliceto. Scagnello. Torresina. Viola.
    http://www.confartcn.it/Ceva/Ceva.asp
    thisPage._location = "/Ceva/Ceva.asp"; Zona di CEVA Piazza Gandolfi, 18
    Tel. 0174 701250 Fax 0174 721250
    artigiani.ceva@confartcn.com
    Comuni di riferimento Alto Bagnasco Battifollo Briga Alta Camerana Caprauna Castellino Tanaro Castelnuovo di Ceva Ceva Garessio Gottasecca Igliano Lesegno Lisio Marsaglia Mombarcaro Mombasiglio Monesiglio Montezemolo Nucetto Ormea Paroldo Perlo Priero Priola Prunetto Roascio Sale delle Langhe Sale San Giovanni Saliceto Scagnello Torresina Viola Consiglio di zona Presidente Vincenzo Amerio Vicepresidente Valerio Fenoglio Funzionario responsabile Giuseppe Berardo Consiglio Archivio storico Presidenti di zona Davide Bergna Giovanni Gazzano Leo Bezzone dal 1985 Vincenzo Amerio Dati statistici ASSOCIAZIONE ARTIGIANI DELLA PROVINCIA DI CUNEO
    Via 1° Maggio, 8 - Cuneo
    Tel. 0171 451111 - Fax 0171 697453 thisPage = thisPage; thisPage.location = "../"; thisPage.navigate = new Object; thisPage.navigate.show = Function('thisPage.invokeMethod("", "show", this.show.arguments);');

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter