Geometry.Net - the online learning center
Home  - Scientists - Brianchon Charles
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 81    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Brianchon Charles:     more detail

1. Brianchon
Charles Julien Brianchon. Born 19 Dec 1783 in Sèvres, France Died 29 April 1864in Versailles, France. CharlesJulien Brianchon s background is not known.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Brianchon.html
Charles Julien Brianchon
Born:
Died: 29 April 1864 in Versailles, France
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Charles-Julien Brianchon Monge . In fact he published his first paper in the while still a student. In that paper Brianchon rediscovered Pascal 's Magic Hexagon. He showed that in any hexagon formed of six tangents to a conic , the three diagonals meet at a point. This result is often called Brianchon's Theorem and it is the result for which he is best known. In fact this theorem is simply the dual of Pascal 's theorem which was proved in 1639:- If all the vertices of a hexagon lie on a conic, and if the opposite sides intersect, then the points of intersection lie on a line. In [1] Greitzer points out that Pascal recognised that his theorem was projective in nature so it is surprising that it took 167 years before someone realised that its dual, which is Brianchon's Theorem, would also be true. Although Spain allowed Napoleon's armies to cross their country the campaign was to turn out badly for Napoleon. The army occupied Lisbon but when Napoleon tried to install Joseph Bonaparte, king of Naples, as the Spanish king there was a revolt in Spain. Brianchon is said to have fought bravely in Napoleon's campaign in both Portugal and in Spain, but he was on the losing side for Napoleon's forces were defeated in both Spain and Portugal. Not only was Brianchon a brave soldier, but he was also said to be a very able one.

2. La Matematica, La Geometria, L'analisi Per Chi Voglia Ripartire Da Zero
brianchon charles Jiulien francese (1783-1864) studioso di proiettiva VI-84
http://spazioinwind.libero.it/corradobrogi/indiceb.htm
Inizio: Volume: Corrado Brogi Indice Enciclopedico Indice: A B C D ... Z
BABILONESI
(alfabeto) VII-233
Backus Naur Form (BNF) VII-253
BANACH Stefan Matematico Polacco (1892-1945) pose le basi dell'analisi funzionale spazio di Banach.
BANACHIEWICZ Y. matematico polacco noto per il metodo, che prende il suo nome, per il calcolo dei determinanti,da lui chiamati Cracoviani, in onore della sua città. pubblicò : "Etude d'analise pratique" Cracovia -1938.
Banda (opposta) I-262 V-89
BARKHAUSEN Enrich Georg - fisico tedesco (1881-1956) (magnetini di) IV-85 VII-117
Baricentrica (coordinata) III-252 VI-23
Baricentro I-266 I-267 VI-27 VI-29
" (calcolo dei) III-410
" (della linea cicloide) V-225 " (dell'area della cicloide) V-226 " (di due forze o masse) III-414 " (di masse puntiformi III-415 VI-31 " (di tre masse) VI-31 " (di una linea) III-417 " (di una linea spezzata)

3. Base Joconde - Personnages Représentés
Translate this page de Brézé Françoise de, Brézé Louis de Brézé maréchal de Brézé marquisde Brézé Mme de Brézé vicomte de brianchon charles Julien Briand Aristide
http://www.culture.gouv.fr/documentation/joconde/QUIDAMS/quidams_13.htm
Base Joconde
Boze Claude Gros de
Boze Ursule

Bozzolo Isabella di

Bra Eustache Marie Joseph
...
Broussier Jean-Baptiste

4. Study For Evererybody, Who Don't Know All. - Encyclopedia
brianchon charlesJulien, -France mathematician (Brianchon s theorem).Briand Aristide, -France 11 premier (1909-22) (Nobel 1926).
http://www.saturn-soft.net/Study/Vb/Data/B.htm
document.write("Remote Control");
A
B C D E F ... Baade W H Walter, - German/US astronomer (Andromeda) Baader Franz Xaver von, - German philosopher/theologist Babel Isaak E, - Odessa Russia [now Ukraine] writer Babel Isaak, - Russian short-story writer/dramatist (Red Calvary) Babeuf François Noël, - (Gracchus Babeuf) French utopian socialist (Tribun du Peuple) Babits Mihaly, - Hungarian poet Babur founder of Mughal dynasty in India (1526-30 BabyFace Kenneth Edmonds Bacall Lauren, - Staten Island actress (Dark Passage Key Largo) Bach Johann Sebastian, - gone for Baroque Bacharach Burt, - KC Mo composer (I'll Never Fall in Love Again) Backhuysen Ludolf, - Dutch seascape painter/cartoonist Bacon Sir Francis, - England statesman/essayist (Novum Organum) Badoglio Pietro, - Italy gen/Libya gov (1928-33)/PM of Italy (1943-44) Baen Jan de, - portrait painter/etcher Baes Firmin, - Flemish painter Baeyens August, - Flemish composer (Coriolanus) Baez Joan, - singer.

5. B Index
Bramer, Benjamin (180) Brashman, Nikolai (276*) Brauer, Alfred (1412*) Bremermann,HansJoachim (1177*) Brauer, Richard (2242*) brianchon, charles (689) Briggs
http://www-gap.dcs.st-and.ac.uk/~history/Indexes/B.html
Names beginning with B
The number of words in the biography is given in brackets. A * indicates that there is a portrait. Babbage , Charles (2793*)
Bachelier
, Louis (1384*)
Bachet
, Claude (165)
Bachmann
, Paul (386*)
Backus
, John (542*)
Bacon
, Roger (657*)
Baer
, Reinhold (596*)
Baghdadi
, Abu al (947)
Baire

Baker
, Alan (647*)
Baker
, Henry (794*) Ball , Walter W Rouse (706) Balmer , Johann (601*) Banach , Stefan (2533*) Banneker , Benjamin (892*) Banna , al-Marrakushi al (861) Banu Musa brothers Banu Musa, al-Hasan Banu Musa, Ahmad Banu Musa, Jafar ... bar Hiyya , Abraham (641) Barbier , Joseph Emile (637) Bari , Nina (403*) Barlow , Peter (623) Barnes , Ernest (609*) Barocius , Franciscus (201) Barrow , Isaac (2332*) Barozzi , Francesco (201) Bartholin , Erasmus (189) Batchelor , George (1035*) Bateman , Harry (1651*) Battaglini , Guiseppe (102*) Baudhayana Battani , Abu al- (1333*) Baxter , Agnes (624*) Bayes , Thomas (538*) Beaugrand , Jean (222) Beaune , Florimond de (316) Beg , Ulugh (1219*) Bell, Eric Temple Bell, John Bellavitis , Giusto (762*) Beltrami , Eugenio (1057*) ben Ezra , Abraham (552) ben Gerson , Levi (268) ben Tibbon , Jacob (198) Bendixson , Ivar Otto (1208*) Benedetti , Giovanni (211) Bergman , Stefan (311*) Berkeley , George (239*) Bernays , Paul Isaac (772*) Bernoulli, Daniel

6. Brianchon, Charles (1785-1864) -- From Eric Weisstein's World Of Scientific Biog
Alphabetical Index. About this site. Branch of Science , Mathematiciansv. Nationality , French v. brianchon, charles (17851864), French
http://scienceworld.wolfram.com/biography/Brianchon.html
Branch of Science Mathematicians Nationality French
Brianchon, Charles (1785-1864)

French mathematician who proved Brianchon's theorem a dual theorem of Pascal's theorem which is valid if the words "point" and "line" are exchanged.
Additional biographies: MacTutor (St. Andrews)

7. Blank Entries From Eric Weisstein's World Of Scientific Biography
Translate this page William (1891-1971) Brattain, Walter Houser (1902-1987) Braun, Wernher von (1912-1977)Breit, Gregory (1899-) brianchon, charles (1785-1864) Bridges, Calvin
http://scienceworld.wolfram.com/biography/blank-entries.html
Please consider contributing or extending the following entries. For more information about making contributions, see the page on contributing . Please send contributions to scienceworld@wolfram.com
Abbe, Ernst (1840-1905)

Adams, John Couch (1819-1892)

Aepinus, Franz (1724-1802)
...
Zwicky, Fritz (1898-1974)

8. Charles-Julien Brianchon --  Encyclopædia Britannica
brianchon, charlesJulien Encyclopædia Britannica Article. charles-Julien brianchon. MLAstyle charles-Julien brianchon. Encyclopædia Britannica. 2004.
http://www.britannica.com/eb/article?eu=16644

9. Charles-Julien Brianchon --  Encyclopædia Britannica
brianchon, charlesJulien Encyclopædia Britannica Article. charles-Julien brianchonborn December 19, 1783, Sèvres, France died April 29, 1864, Versailles
http://www.britannica.com/eb/article?eu=16644&tocid=0&query=julien lamettrie&ct=

10. Editing Charles Brianchon - Edit - Wikipedia, The Free Encyclopedia
WikipediaRequested articles/Mathematical and Natural Sciences B NGWH Beeger Robert Berger - Leonard Blumenthal - Jonathan Borwein - Peter Borwein- Jean Bourgain - Werner Boy - charles brianchon - William Brouncker - C
http://en.wikipedia.org/w/wiki.phtml?title=Charles_Brianchon&action=edit

11. List Of Mathematical Topics
theory Branching process Brauer group Breadthfirst search Bresenham sline algorithm Brewster s angle brianchon, charles Briggs, Henry
http://www.fact-index.com/l/li/list_of_mathematical_topics.html
Main Page See live article Alphabetical index
List of mathematical topics
These pages collect pointers to all Wikipedia articles related to Mathematics . Everything remotely connected to mathematics, including articles about mathematicians, should be listed here. (For a much nicer list of mathematicians, see list of mathematicians .) The list is not necessarily complete or up to date - if you see an article that should be here but isn't (or one that shouldn't be here but is), please do update the page accordingly. The main purpose of these pages is to make it easy for those interested in the subject to monitor changes to these pages. You can use the following links:
Recent changes in mathematics articles, A-C Recent changes in mathematics articles, D-F Recent changes in mathematics articles, G-I Recent changes in mathematics articles, J-L Recent changes in mathematics articles, M-O Recent changes in mathematics articles, P-R Recent changes in mathematics articles, S-U Recent changes in mathematics articles, V-Z
A WikiProject is being developed at Wikipedia:WikiProject Mathematics regarding issues of form, structure and notation for mathematics articles. Check it out!

12. List Of Lunar Craters
charles Babbage); Babcock; Back; Backlund; Baco; Brashear;Brayley; Bredikhin; Breislak; Brenner; Brewster; brianchon; Bridgman; Briggs;
http://www.fact-index.com/l/li/list_of_lunar_craters.html
Main Page See live article Alphabetical index
List of Lunar craters
This is a list of the craters on the Moon A B C ... Z
A
  • Abbe (after Ernst Abbe, German physicist) Abbot (after Charles Greeley Abbot , American astrophysicist) Abduh (after Mohammad Abduh, Egyptian writer) Abel (after Niels Henrik Abel Abenezra (after Abraham ibn Ezra Abetti (after Antonio Abetti, Italian astronomer) Abulfeda (after Ismael Abul-fida, Syrian geographer) Acosta (after Cristobal Acosta, Portuguese doctor) Adams (jointly after astronomers John Couch Adams , Walter Sidney Adams, and Charles H. Adams) Agatharchides (after Agatharchides Agrippa (after Agrippa, Greek astronomer) Airy (after George Biddell Airy Aitken (after Robert Aitken, American astronomer) Akis (a common Greek female name) Alan (a common Irish male name) Al-Bakri (after A. A. al-Bakri, Spanish-Arabian geographer) Albategnius (after al-Batani Al-Biruni (after al-Biruni Alden (after Harold Alden, American astronomer) Alder (after Kurt Alder , German chemist) Aldrin (after Buzz Aldrin Alekhin (after Nikolai Alekhin, Soviet rocket designer) Alexander (after Alexander the Great Alfraganus (after al Fargani, Persian astronomer)

13. Dupin
sous Louis-Philippe, charles Dupin fut aussi un brillant Bessel brianchon
http://www.sciences-en-ligne.com/momo/chronomath/chrono2/Dupin.html
Indicatrice de Dupin : Lorsqu'une surface S S au voisinage d'un de ses points : Étude de l'indicatrice de Dupin :
Cyclide de Dupin : Sur une surface, une ligne de courbure est une courbe dont la cyclides , dont les deux familles de lignes de courbure sont des cercles. Ce sont des inversion d'un tore Pour en savoir plus : Bessel Brianchon

14. Stelling Van Pascal
3. De stelling van brianchon voor cirkels terug De stelling is inderdaad in 1806ontdekt door brianchon (charles Julien brianchon, 17851864, Frankrijk), meer
http://www.pandd.demon.nl/pascal.htm
De stellingen van Pascal en Brianchon voor cirkels Overzicht Transversalen Meetkunde 0. Overzicht
  • De stelling van Pascal voor cirkels De stelling van Pappos De stelling van Brianchon voor cirkels
  • 1. De Stelling van Pascal voor cirkels
    De stelling van Pascal ( Blaise Pascal , 1623-1662, Frankrijk) geformuleerd voor cirkels luidt Stelling van Pascal voor cirkels
    Van een zeshoek (niet noodzakelijk convex) waarvan de hoekpunten op een cirkel liggen, zijn de snijpunten van de drie paren overstaande zijden verschillend en collineair. Bewijs: zie figuur 1. figuur 1 ABCDEF is een zeshoek die een omgeschreven cirkel heeft.
    De snijpunten van de paren overstaande zijden (AB, DE), (BC, EF), (CD, FA) zijn opvolgend L,M,N.
    Nu zijn L,M,N collineair.
    Stel X = (AB,CD), Y = (CD,EF) en Z = (EF,AB).
    Beschouw nu driehoek XYZ met transversalen DE, FA en BC.
    Volgens de Stelling van Menelaos geldt nu (voor elk drietal punten op de zijden)
    (XZL)(ZYE)(YXD) = 1
    (XZA)(ZYF)(YXN) = 1
    (XZB)(ZYM)(YXC) = 1 Vermenigvuldiging van deze uitdrukkingen geeft na ordening Zodat (XZL)(ZYM)(YXN) = 1 Een wederom volgens de (omgekeerde) Stelling van Menelaos : L,M,N zijn collineair.

    15. Euler-cirkel
    Opmerkingen 1 Stelling 5 is als probleem door Poncelet (Jean Victor Poncelet,17881867, Frankrijk) en brianchon (charles Julien brianchon, 1785-1864
    http://www.pandd.demon.nl/euler.htm
    Euler-cirkels Overzicht Koordenvierhoeken Feuerbach Meetkunde Zie ook de pagina " Complexe getallen en meetkundige bewijzen " 0. Overzicht
  • Definitie en inleiding Euler-cirkels in een vierhoek
    Willekeurige vierhoek
    Euler-punt
    Koordenvierhoek
    Euler-cirkels in een koordenvijfhoek Samenhang met een orthogonale hyperbool
    Stelling van Poncelet-Brianchon
  • 1. Definitie en inleiding
    In onderstaande paragrafen behandelen we enkele eigenschappen van n-hoeken (n = 3, 4, 5) in samenhang met de cirkels van Euler en het concyclisch zijn van bijzondere punten, alsmede het verband tussen het punt van Euler van een vierhoek en een orthogonale hyperbool door de vierhoekpunten (naar Leonard Euler , 1707-1783, Zwitserland). Definitie
    De Euler-cirkel van een koorde van een cirkel met straal R is de cirkel met straal R/2 die als middelpunt het midden van de koorde heeft ( zie figuur 1 figuur 1 figuur 2 In figuur 2 zijn de Euler-cirkels van de zijden van driehoek ABC getekend; de zijden zijn dus opgevat als koorden van de omcirkel van ABC.
    De bijzondere eigenschappen van deze figuur zijn geformuleerd in stelling 1 Stelling 1
    De middelpunten van de Euler-cirkels van de zijden van een driehoek zijn concyclisch.

    16. Geometrien Der Ebene
    Translate this page .. 2. Der Satz von brianchon (charles J. brianchon / französischerMathematiker / 1785-1818) Es sei ein Sechseck gegeben.
    http://rueckert-gym.de/facharbeiten/P3d.html
    Sätze der projektiven Geometrie Auf dieser Seite werden einige Sätze der projektiven Geometrie vorgestellt. 1. Der Satz von Pappos (Pappos / griechischer Mathematiker / ca 300 v.Chr.) Es sei ein Sechseck gegeben (Ecken- und Seitenbezeichnung wie in der Abbildung).
    Liegen die Ecken A, C, E auf einer Geraden und die Ecken B, D, F auf einer anderen Geraden, so schneiden sich gegenüberliegende Seiten in drei kollinearen Punkten.
    (Bemerkung: Mit Seiten sind hier nicht die Strecken, sondern - wie häufig in der projektiven Geometrie - die Geraden, auf denen diese liegen, gemeint.) Kurzform:
    x d,b x e,c x (Diese algbraische Formelsprache gibt den Sachverhalt kurz und präzise wieder; die erste Version ist aber doch wohl anschaulicher.) Abb. zum Satz des Pappos Die gelben Punkte sind beweglich. name="lang" value="deutsch"> Abb. zum Satz des Brianchon Die gelben Punkte sind z. T. beweglich. archive="Geonet.jar"> PARAM name="animate" value="0,25">name="lang" value="deutsch">

    17. OnTab Online: Tabel 51
    Argand, JeanRobert, 1768 - 1822. Gauss, Karl Friedrich, 1777 - 1855. brianchon,charles, ca. 1783 - 1864. Binet, Jacques-Philippe-Marie, 1786 - 1856.
    http://www.casia.nl/OnTab/tabel51.html
    51. Wiskundigen
    Ahmes ca. 1650 vC Pythagoras ca. 540 vC Hippocrates ca. 440 vC Plato ca. 430 vC - ca. 349 vC Hippias ca. 425 vC Theaethetus ca. 417 vC - ca. 369 vC Archytas ca. 400 vC Xenocrates 396 vC - 314 vC Theodorus ca. 390 vC Aristoteles 384 vC - 322 vC Menaechmus ca. 350 vC Euclides ca. 300 vC Archimedes ca. 287 vC - ca. 212 vC Nicomedes ca. 240 vC Eeratosthenes ca. 230 vC Diocles ca. 180 vC Hipparchus ca. 180 vC - ca. 125 vC Hero van Alexandrie ca. 75 Ptolemaeus ca. 85 - ca. 165 Nicomachus van Gerasa ca. 100 Theoon van Smyrna ca. 125 Diophantus 1ste of 3de eeuw Pappus ca. 320 Iamblichus ca. 325 Produs Zu Chongzhi Brahmagupta ca. 628 Al-Chwarizmi ca. 825 Thabit ibn Qurra Mahavira ca. 850 Bhaskara 1114 - ca. 1185 Leonardo van Pisa
    (Fibonacci) ca. 1170 - na 1240 Ibn Al-Banna Zhu Shijie ca. 1303 Pacioli, Fra Luca ca. 1445 - 1517 Vinci, Leonardo da Durer, Albrecht Stifel, Michael Tartaglia, Niccolo ca. 1500 - 1557 Cardano, Girolamo

    18. Teorema De Brianchon
    Translate this page El teorema de brianchon se debe a charles Julien brianchon (1783-1864)y afirma que Las diagonales de un exágono circunscrito
    http://www.ctv.es/USERS/pacoga/bella/htm/brianch.htm
    BELLA GEOMETRIA Teorema de Brianchon
    El teorema de Brianchon se debe a Charles Julien Brianchon (1783-1864) y afirma que: punto de Brianchon El teorema de Brianchon es el teorema dual del teorema de Pascal Aplicando el mismo procedimiento, podemos obtener que:
    Francisco Javier García Capitán, 2000.
    pacoga@ctv.es
    var logDomain = 'www.telepolis.com'; var logChannel = 'miweb'; var logPath = 'control_ctv';

    19. TEOREMA DE BRIANCHON
    TEOREMA DE brianchon. El teorema de brianchon es degut a charles Julienbrianchon (17831864) i afirma que Les diagonals d´un hexàgon
    http://www.xtec.es/~jdomen28/teoremadebrianchon.htm
    TEOREMA DE BRIANCHON El teorema de Brianchon es degut a Charles Julien Brianchon (1783-1864) i afirma que: Les diagonals d´un hexàgon circumscrit a una cònica es tallen en un punt. La següent figura mostra una elipse inscrita en un hexàgon. Al punt comú a les tres diagonals, colorejat en vermell a la figura, se´l coneix amb el nom de punt de Brianchon El teorema de Brianchon és el teorema dual del teorema de Pascal . Què és un teorema dual? Casos límit Fent coincidir dos costats consecutius de l´hexàgon en un de sol i substituint el vèrtex desaparegut pel punt de contacte, obtenim que En tot pentàgon circumscrit a una cònica, la recta que uneix un vèrtex amb el punt de contact del costat oposat, i les diagonals que uneixen els altres vèrtexs no consecutius, són tres rectes que concorren en un mateix punt. Aplicant el mateix procediment, podem obtenir que: En tot quadrilàter circumscrit a una cònica, si es prenen els punts de contacte de dos costats que es tallen en un vèrtex, la recta d´unió d´aquest amb el seu oposat i les d´unió dels punts de contacte amb els altres dos vèrtexs són tres rectes que concorren en un mateix punt.

    20. B Index
    479*) Brahmagupta (247) Braikenridge, William (274) Bramer, Benjamin (180) Brashman,Nikolai (276*) Brauer, Richard (234*) brianchon, charles (110) Briggs
    http://intranet.woodvillehs.sa.edu.au/pages/resources/maths/History/B.htm
    Names beginning with B
    The number of words in the biography is given in brackets. A * indicates that there is a portrait. Babbage , Charles (2793*)
    Bachet

    Bachmann
    , Paul (70*)
    Backus
    , John (542*)
    Bacon
    , Roger (657*)
    Baer
    , Reinhold (596*)
    Baire

    Baker
    , Alan (647*)
    Baker
    , Henry (195*)
    Ball
    , Walter W R (85)
    Balmer
    , Johann (95*) Banach , Stefan (290*) Barbier , Joseph Emile (67) Bari , Nina (403*) Barlow , Peter (112) Barocius , Franciscus (201) Barrow , Isaac (2332*) Bartholin , Erasmus (189) Bateman , Harry (526*) Battaglini , Guiseppe (102*) Battani , Abu al' (194) Bayes , Thomas (538*) Beaugrand , Jean (222) Beaune , Florimond de (316) Beg , Ulugh (327) Bell , Eric Temple (282*) Bellavitis , Giusto (93) Beltrami , Eugenio (158*) Bendixson , Ivar Otto (85*) Benedetti , Giovanni (211) Bergman , Stefan (311*) Berkeley , George (239*) Bernays , Paul Isaac (772*) Bernoulli, Daniel Bernoulli, Jacob Bernoulli , Jacob(II) (289) Bernoulli, Johann Bernoulli, Johann(II) Bernoulli, Johann(III) Bernoulli, Nicolaus(I) ... Bers , Lipman (440*) Bertini , Eugenio (151) Bertins , Alexis des (106) Bertrand , Joseph (306*) Berwick , William (121) Besicovitch , Abram (642*) Bessel , Friedrich (1664*) Bessy , Bernard de (86) Betti , Enrico (250*) Beurling , Arne (177*) , Etienne (236) Bhaskara Bianchi , Luigi (438) Bieberbach , Ludwig (127*) Billy , Jacques de (150) Binet , Jacques (438*) Biot , Jean-Baptiste (417*) Birkhoff , George D (596*) Biruni , Abu al' (306*) Bjerknes, Carl

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 81    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter