Geometry.Net - the online learning center
Home  - Scientists - Brahmagupta
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-86 of 86    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Brahmagupta:     more books (29)
  1. Algebra, with Arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bháscara. Translated by Henry Thomas Colebrooke by 7th cent Brahmagupta, b 1114 Bhaskaracarya, et all 2010-08-27
  2. Brahmagupta, Man who found zero, addition, subtraction, multiplication and division (1) by Sanjaya Ranatunga, 2008-05-10
  3. Ancient Indian Mathematicians: Brahmagupta
  4. Brahmagupta: Great Ape Language
  5. Hindu Algebra: from the Sanskrit Works of Brahmagupta and Bhaskar by H.T. Colebrooke, 2004-12-30
  6. Décès En 668: Constant Ii, Saint Wandrille, Brahmagupta (French Edition)
  7. 7th-Century Mathematicians: Brahmagupta, Anania Shirakatsi, Bhaskara I
  8. People From Jalore District: Brahmagupta, Bhagraj Choudhary, Kanhad Dev, Magha, Gopal Singh
  9. Quadrilatère: Parallélogramme, Rectangle, Losange, Trapèze, Carré, Cerf-Volant, Formule de Brahmagupta, Antiparallélogramme, Pseudo-Carré (French Edition)
  10. Brahmagupta-Fibonacci Identity
  11. Brahmagupta's Problem
  12. People From Rajasthan: Brahmagupta, Paramhans Swami Maheshwarananda, Thakur Deshraj, List of People From Rajasthan, Ram Rahim Singh, Ranabai
  13. Indische Mathematik: S. Ramanujan, Null, Indische Ziffern, Aryabhata-Code, Brahmagupta (German Edition)
  14. Ancient Indian Scientists: Ancient Indian Mathematicians, Ancient Indian Physicians, Nagarjuna, Brahmagupta, Aryabhata, Sushruta Samhita

81. Brahmagupta Polynomial
brahmagupta Polynomial. One of the Polynomials obtained by taking Powers of thebrahmagupta Matrix. (3). (4). The brahmagupta Polynomials satisfy, (5). (6).
http://icl.pku.edu.cn/yujs/MathWorld/math/b/b364.htm
Brahmagupta Polynomial
One of the Polynomials obtained by taking Powers of the Brahmagupta Matrix . They satisfy the recurrence relation
A list of many others is given by Suryanarayan (1996). Explicitly,
The Brahmagupta Polynomials satisfy
The first few Polynomials are
and
Taking and gives equal to the Pell Numbers and equal to half the Pell-Lucas numbers. The Brahmagupta Polynomials are related to the Morgan-Voyce Polynomials , but the relationship given by Suryanarayan (1996) is incorrect.
References Suryanarayan, E. R. ``The Brahmagupta Polynomials.'' Fib. Quart.
Eric W. Weisstein

82. Apronyms: BRAHMAGUPTA
Really Organizing Naturally Your Memory Skills! APRONYM. 92%, brahmagupta,Brilliant Reasoning in Astronomy, Helped Mathematics And Geometry.
http://apronyms.com/gonym.php?ap=BRAHMAGUPTA

83. Brahmagupta - Wikipédia
Encyclopedia4U brahmagupta - Encyclopedia Articlebrahmagupta. brahmagupta (598-668) was an Indian mathematician and astronomer. Ituses material from the Wikipedia article brahmagupta .
http://fr.wikipedia.org/wiki/Brahmagupta
Brahmagupta
Un article de Wikip©dia, l'encyclop©de libre.
Brahmagupta (Mult¢n, ) est un math©maticien indien Brahmagupta est l'un des plus importants math©maticiens tant de l'Inde que de son ©poque. On lui conna®t deux ouvrages majeurs : le Br¢hma Siddh¢nta ) et le Khandakh¢dyaka Il dirige l'observatoire astronomique d' Ujja¯n , ville qui est au VIIe si¨cle un centre majeur de recherches en math©matique. C'est dans son premier ouvrage qu'il d©finit le z©ro comme r©sultat de la soustraction d'un nombre par lui-mªme, qu'il d©crit les r©sultats d'op©rations avec ce nouveau nombre - mais se trompe en donnant comme r©sultat z©ro   0/0, ainsi que la r¨gle des signes lors d'op©rations entre entiers relatifs (profits et pertes). Il donne aussi dans cet ouvrage la solution de l' ©quation g©n©rale de degr© 2 Brahmagupta fut le premier math©maticien   utiliser l'alg¨bre pour r©soudre des probl¨mes astronomiques. Il proposa comme dur©e de l'ann©e : 365 jours, 6 heures, 5 minutes, et 19 secondes. Views Outils personels Navigation Rechercher Bo®te   outils Autres langues
  • English Derni¨re modification de cette page : 22 d©c 2003   00:30.

84. TITUS Texts: Brahmagupta, Brahmasphutasiddhanta
TITUS brahmagupta, Brahmasphutasiddhanta Part No. 2. Chapter 18. at?akuakaad?yayas. Verse 1a. praye?a yatas prasnas
http://titus.uni-frankfurt.de/texte/etcs/ind/aind/klskt/mathemat/brsphsd/brsph00
TITUS
Brahmagupta, Brahmasphutasiddhanta: Part No. 2
Chapter: 18
[atʰa kuṭṭaka-adʰyāyas]
Verse: 1a prāyeṇa yatas praśnās kuṭṭākārāt r̥te na śakyante /
Verse: 1c j±Ätum vaká¹£yāmi tatas kuṭṭākāram saha praśnais //
Verse: 2a kuṭṭaka-ʰkʰa-r̥ṇa-dʰana-avyakta-madʰya-haraṇa-ՙeka-varṇa-bʰāvitakais /
Verse: 2c ācāryas tantra-vidām j±Ätais varga-prakrÌ¥tyā ca //
[kuá¹­á¹­akam]
Verse: 3a adʰika-agra-bʰāga-hārāt ūna-agra-cʰeda-bʰājitāt śeṣam /
Verse: 3c yat tat paraspara-hr̥tam labdʰam adʰas adʰas pr̥tʰak stʰāpyam //
Verse: 4a śeṣam tatʰā iṣṭa-guṇitam yatʰā agrayos antareṇa saṃyuktam /
Verse: 4c śudʰyati guṇakas stʰāpyas labdʰam ca antyāt upāntya-guṇas // Verse: 5a sva-ūrdʰvas antya-yutas agra-antas hīna-agra-cʰeda-bʰājitas śeṣam / Verse: 5c adʰika-agra-cʰeda-hatam adʰika-agra-yutam bʰavati agram // Verse: 6a cʰeda-vadʰasya ՙdvi-yugam cʰeda-vadʰas yuga-gatam ՙdvayos agram / Verse: 6c kuṭṭākāreṇa evam ՙtri-ādi-graha-yuga-gata-ānayanam // Verse: 7a bʰa-gaṇa-ādi-śeṣam agram cʰeda-hr̥tam ʰkʰam ca dina-ja-śeṣa-hr̥tam / Verse: 7c anayos agram bʰa-gaṇa-ādi-dina-ja-śeṣa-uddʰr̥tam dyu-gaṇas // [Cb.8]

85. TITUS Texts: Brahmagupta, Aryabhatiya
TITUS brahmagupta, Aryabhatiya Part No. 2. Chapter 2. ga?itapada.Verse 1a. brahma-ku-sasi-bud?a-b?r?gu-ravi-kuja-guru-ko?a
http://titus.uni-frankfurt.de/texte/etcs/ind/aind/klskt/mathemat/aryabhat/aryab0
TITUS
Brahmagupta, Aryabhatiya: Part No. 2
Chapter: 2
gaṇita-pāda
Verse: 1a brahma-ku-śaśi-budʰa-bʰr̥gu-ravi-kuja-guru-koṇa-bʰa-gaṇān @namas-kr̥tya /
Verse: 1c āryabÊ°aá¹­as tu iha @nigadati kusuma-pure abÊ°yarcitam j±Änam //
Verse: 2a ՙekam ՙdaśa ca ՙśatam ca ՙsahasram ՙayuta-ՙniyute tatʰā ՙprayutam /
Verse: 2c ՙkoṭi-ՙarbudam ca ՙvr̥ndam stʰānāt stʰānam ՙdaśa-guṇam @syāt //
Verse: 3a vargas sama-ՙcatur-aśras pʰalam ca sadr̥śa-ՙdvayasya saṃvargas /
Verse: 3c sadr̥śa-ՙtraya-saṃvargas gʰanas tatʰā ՙdvādaśa-aśris @syāt //
Verse: 4a bʰāgam @haret avargān nityam ՙdvi-guṇena varga-mūlena /
Verse: 4c vargāt varge śuddʰe labdʰam stʰāna-antare mūlam //
Verse: 5a agÊ°anāt @bÊ°ajet ՙdvitÄ«yāt ՙtri-guṇena gÊ°anasya mÅ«la-vargeṇa / Verse: 5c vargas ՙtri-pÅ«rva-guṇitas śodÊ°yas ՙpratÊ°amāt gÊ°anas ca gÊ°anāt // Verse: 6a ՙtri-bÊ°ujasya pÊ°ala-śarÄ«ram sama-Ê°dala-koá¹­Ä«-bÊ°ujā-ՙardÊ°a-saṃvargas / Verse: 6c Å«rdÊ°va-bÊ°ujā-tad-saṃvarga-ՙardÊ°am sas gÊ°anas ՙṣaá¹£-aśris iti // Verse: 7a sama-pariṇāhasya-ՙardÊ°am viá¹£kambÊ°a-ՙardÊ°a-hatam eva vrÌ¥tta-pÊ°alam / Verse: 7c tad-nija-mÅ«lena hatam gÊ°ana-gola-pÊ°alam niravaśeá¹£am // Verse: 8a āyāma-guṇe pārśve tad-yoga-hrÌ¥te sva-pāta-lekÊ°e / Verse: 8c vistara-yoga-ՙardÊ°a-guṇe j±eyam ká¹£etra-pÊ°alam āyāme // Verse: 9a sarveṣām ká¹£etrāṇām @prasādÊ°ya pārśve pÊ°alam tad-abÊ°yāsas / Verse: 9c paridÊ°es ՙṣaá¹£-bʰāga-jyā viá¹£kambÊ°a-ՙardÊ°ena sā tulyā //

86. October 26,1996
brahmagupta Polynomials in two parametersUniversity of Hong Kong Conference on Special. 3,May 1996. Properties of the brahmagupta Matrix, Int. Journal ofMath.
http://www.math.uri.edu/~sury/
E.R. Suryanarayan
Selected Publications
Pythagorean Boxes (with R.A. Beauregard), Mathematics Magazine June, 2001
S-P-2 primes (with R.A. Beauregard), The Mathematical Gazette March, 2001
Arithmetic Triangles and Bhaskara Equation (with R.A. Beauregard), College Mathematics Journal ,March, 2000.
Integral Triangles (with R.A. Beauregard), Mathematics Magazine (October 2000).
Brahmagupta Polynomials in two parameters University of Hong Kong Conference on Special Functions, June 21, 1999 (with Rangarajan)
The Brahmagupta Polynomials in two complex variables, The Fibonacci Quarterly (Feb. 1998, p. 34-42). This paper was presented at the Seventh International Conference on the Fibonacci Numbers and their Applications held in Graz, Austria, July 1996.
The Brahmagupta Triangles, (with R.A. Beauregard) College Mathematics Journal, January 1998
Parametric Representation of Primitive Pythagorean Triples (with R.A. Beauregard), The Mathematics Magazine, Vol. 169, No. 3, June 1996.
Pythagorean Triples: The Hyperbolic View (Cover and Article), (with R. A. Beauregard), The College Math Journal, Vol. 27, No. 3, May 1996.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-86 of 86    Back | 1  | 2  | 3  | 4  | 5 

free hit counter