Geometry.Net - the online learning center
Home  - Scientists - Brahmagupta
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 86    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Brahmagupta:     more books (29)
  1. Algebra, with Arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bháscara. Translated by Henry Thomas Colebrooke by 7th cent Brahmagupta, b 1114 Bhaskaracarya, et all 2010-08-27
  2. Brahmagupta, Man who found zero, addition, subtraction, multiplication and division (1) by Sanjaya Ranatunga, 2008-05-10
  3. Ancient Indian Mathematicians: Brahmagupta
  4. Brahmagupta: Great Ape Language
  5. Hindu Algebra: from the Sanskrit Works of Brahmagupta and Bhaskar by H.T. Colebrooke, 2004-12-30
  6. Décès En 668: Constant Ii, Saint Wandrille, Brahmagupta (French Edition)
  7. 7th-Century Mathematicians: Brahmagupta, Anania Shirakatsi, Bhaskara I
  8. People From Jalore District: Brahmagupta, Bhagraj Choudhary, Kanhad Dev, Magha, Gopal Singh
  9. Quadrilatère: Parallélogramme, Rectangle, Losange, Trapèze, Carré, Cerf-Volant, Formule de Brahmagupta, Antiparallélogramme, Pseudo-Carré (French Edition)
  10. Brahmagupta-Fibonacci Identity
  11. Brahmagupta's Problem
  12. People From Rajasthan: Brahmagupta, Paramhans Swami Maheshwarananda, Thakur Deshraj, List of People From Rajasthan, Ram Rahim Singh, Ranabai
  13. Indische Mathematik: S. Ramanujan, Null, Indische Ziffern, Aryabhata-Code, Brahmagupta (German Edition)
  14. Ancient Indian Scientists: Ancient Indian Mathematicians, Ancient Indian Physicians, Nagarjuna, Brahmagupta, Aryabhata, Sushruta Samhita

61. La Formula Di Brahmagupta
Translate this page La formula di brahmagupta. La formula di cui il quesito chiede di precisarela validità è nota come formula di brahmagupta (matematico
http://matmedia.ing.unina.it/Concorsi a cattedra/quesiti 11 gennaio 2000/Soluzio
La formula di Brahmagupta La formula di cui il quesito chiede di precisare la validità è nota come formula di Brahmagupta (matematico indiano del VII secolo).
Essa vale per i quadrilateri inscrittibili in un cerchio e quindi di un quadrilatero di lati a, b, c e d dà l'area massima.
La formula è contenuta nella lista dei risultati più belli
Del risultato si riporta la seguente giustificazione, chiara e immediata, tratta da d a Enciclopedia delle matematiche elementari e complementi
. Segue dalle formule:
le quali danno: sicché il massimo di S si ha quando è minimo cos b d , cioè per b d

62. Brahmagupta
Translate this page brahmagupta (598 - 665) Matemático da Índia Central nascido em Ujjain,que demonstrou a solução geral para a equação do segundo
http://www.sobiografias.hpg.ig.com.br/Brahmagu.html

63. Mathserv.math.sfu.ca/History_of_Math/India/7thCenturyAD/brahmagupta.html
Índice de MATEMÁTICOS Translate this page brahmagupta se sitúa en el siglo VII, en la dinastía Gurjara, enpleno esplendor de la matemática hindú. . . . . Su vida.
http://mathserv.math.sfu.ca/History_of_Math/India/7thCenturyAD/brahmagupta.html

64. Brahmagupta - Anagrams
Rearranging the letters of brahmagupta gives Up math! A brag? ! brahmagupta anagrams.Rearranging the letters of brahmagupta (Mathematician) gives Up math!
http://www.anagramgenius.com/archive/brahma.html
Brahmagupta anagrams
Rearranging the letters of Brahmagupta (Mathematician) gives: Up math! A brag? (by Mike Mesterton-Gibbons by hand)
(Click Here!)
Download FREE anagram-generating software for your Windows computer Webmasters: make money from your website! Instructions for linking to this page! Learn about the Anagram Genius software (Windows/MacOS) Search the Archive Add YOUR anagrams to the Archive! League table of top contributors Find anagram aliases of brahmagupta (or any other text)! Find gold service anagrams of brahmagupta (or any other text)! Anagram Genius Archive Main Index Anagram Genius Archive India Index www.anagramgenius.com home page
William Tunstall-Pedoe . See this page for other points concerning brahmagupta.

65. Elementary Geometry For College Students, 3e
brahmagupta s Theorem Heron s Theorem can be treated as a corollary of anothertheorem, brahmagupta s Theorem, which can be used to calculate the area of a
http://college.hmco.com/mathematics/alexander/elementary_geometry/3e/students/br
Heron's Theorem Brahmagupta's Theorem Section by Section Objectives How to Study Geometry ... SMARTHINKING Textbook Site for: Elementary Geometry for College Students , Third Edition
Daniel C. Alexander, Parkland College
Geralyn M. Koeberlein, Mahomet-Seymour High School Brahmagupta's Theorem
Heron's Theorem can be treated as a corollary of another theorem, Brahmagupta's Theorem , which can be used to calculate the area of a cyclic quadrilateral. A cyclic quadrilateral is one that is inscribed in a circle; as we saw in Chapter 7, Section 3, not all quadrilaterals are cyclic.
The Hindu mathematician Brahmagupta published much of his work around 628 AD. We have provided his theorem and accompanying information to give you a better understanding of his work.
Some resources on this page are in PDF format and require Adobe® Acrobat® Reader. You can download the free reader below!
For further explanation on how to save or view PDF documents, please see:
Downloading and viewing PDF files.

NOTE:
PC users – Right click on the above link for a list of options to save, open, etc.

66. Fragen Und Anworten Mathematik Seite 2
Translate this page d s=(e+c+d)/2 6,195 I2=sqrt(s*(se)*(sc)*(sd)) 6,598 Gesamtfläche I=I1+I2 11,006Noch einfacher ist die Berechnung nach der Formel von brahmagupta Rechenblatt a
http://joachim.mohr.rottenburg.bei.t-online.de/faqmath2.html
Fragen und Antworten Mathematik Inhalt Kontakt
Satz: Programm "Heron" dazu siehe: Downloadseite unter "Lernprogramme"
Beweis:
Zur Erinnerung: Die binomischen Formel lauten hier:
(a+c) = a + 2ac + c , (c-x) = c - 2cx + x - x und etwas komplizierter
- b sowie -(a-c) = -a + 2ac - c
In seinen Werken kann man z.B. nachlesen, wie er mit Hilfe der Beobachtung einer Mondfinsternis die Entfernung Alexandrias von Rom berechnete.
Bekannt sind auch seine von ihm erdachten Kriegsmaschinen und sein automatisches Theater.
Die Heron'sche Formel befindet sich in seinem erhaltenen Werk "Metrica". Sie stammt jedoch von Archimedes.
Heron
LE 1 cm 1 m 10 m 100 m 1 km FE 1 cm 1 m 1 a (Ar) 1 ha (Hektar) 1 km
Beispiel: a=4; b=2,24; c=3; d=4,47
Hier hat das Viereck bei B einen rechten Winkel. Hier beim "Sehnenviereck" hat das a = b = c = d = 4 cm
Im folgenden wird vorausgesetzt, dass die Vierecke keine einspringende Ecke haben. (Man nennt diese Vierecke "konvex".) Am besten rechnen Sie dann mit TTMathe
I. Man kennt noch eine Diagonale
In diesem Fall kann man das Viereck in zwei Dreiecke zerlegen und von diesen zum Beispiel mit der berechnen.

67. My Favorite Heron-type Formula Is Brahmagupta S Formula For The
My favorite Herontype formula is brahmagupta s formula for the maximum areaof a quadrilateral KK = (s - a)(s - b)(s - c)(s - d) Does *this* have n
http://www.ics.uci.edu/~eppstein/junkyard/quad-area.html
From: gls@odyssey.att.com (Col. G. L. Sicherman) Newsgroups: sci.math Subject: Re: Heron-type formulas Date: 12 Jun 90 13:03:49 GMT Organization: Jack of Clubs Precision Instruments Co. My favorite "Heron-type" formula is Brahmagupta's formula for the maximum area of a quadrilateral: KK = (s - a)(s - b)(s - c)(s - d) Does *this* have n-dimensional analogues? -:- Most people hate egotists. They remind them of themselves. I love egotists. They remind me of me. R. Smullyan Col. G. L. Sicherman gls@odyssey.att.COM

68. Brahmagupta Definition Meaning Information Explanation
brahmagupta (ca. 598ca. 665) from Eric Weisstein s World of brahmagupta (ca. 598-ca. 665), brahmagupta s mathematics seems to be rooted inthe Greek tradition, the achievements of which he improved and generalized.
http://www.free-definition.com/Brahmagupta.html
A B C D ...
Contact

Beta 0.71 powered by:

akademie.de

PHP

PostgreSQL

Google News about your search term
Brahmagupta
Brahmagupta ) was an India n mathematician and astronomer . He was the head of the astronomical observatory at Ujjain, and during his tenure there wrote two texts on mathematics and astronomy: the Brahmasphutasiddhanta in , and the Khandakhadyaka in The Brahmasphutasiddhanta is the earliest known text other than the Mayan number system to treat zero as a number in its own right. It goes well beyond that, however, stating rules for arithmetic on negative numbers and zero which are quite close to the modern understanding. The major divergence is that Brahmagupta attempted to define division by zero , which is left undefined in modern mathematics. His definition is not terribly useful; for instance, he states that 0/0 = 0, which would be a handicap to discussion of removable singularities in calculus
See also
External links
Books about 'Brahmagupta' at: amazon.com

69. SmartPedia.com - Free Online Encyclopedia - Encyclopedia Books.
brahmagupta a Ujjain che era il primo centro matematico dell antica India.
http://www.smartpedia.com/smart/browse/Brahmagupta
Search:
Math and Natural Sciences
Applied Arts Social Sciences Culture ... Caption This

70. Encyclopedia: Brahmagupta
Updated Nov 05, 2003. Encyclopedia brahmagupta. UserInfrogmationchanged the reference to the independent Mayan innovation of zero
http://www.nationmaster.com/encyclopedia/Brahmagupta

Supporter Benefits
Signup Login Sources ... Pies
Factoid #39 Looking for Czech and Slovak men? Half are in factories Interesting Facts Make your own graph:
Hold down Control and click on
several. Compare All Top 5 Top 10 Top 20 Top 100 Bottom 100 Bottom 20 Bottom 10 Bottom 5 All (desc) in category: Select Category Agriculture Crime Currency Democracy Economy Education Energy Environment Food Geography Government Health Identification Immigration Internet Labor Language Manufacturing Media Military Mortality People Religion Sports Taxation Transportation Welfare with statistic: view: Correlations Printable graph / table Pie chart Scatterplot with ... * Asterisk means graphable.
Added May 21
  • Mortality stats Multi-users ½ price Catholic stats

  • Top Graphs
  • Richest Most Murderous Most Populous Most Militaristic ...
  • More Stats
    Categories
  • Agriculture Background Crime Currency ... Welfare
  • Updated: Nov 05, 2003
    Encyclopedia : Brahmagupta
    User:Infrogmation changed the reference to the independent Mayan innovation of zero from Mayan civilization to Maya numerals , I suppose on the theory that the latter is a more specific reference except that zero is only mentioned under Maya numerals as a digit, whereas it is made clear in the "Mathematics" section of

    71. HighBeam Research: ELibrary Search: Results
    1. brahmagupta The Columbia Encyclopedia, Sixth Edition; January 10, 2004 brahmagupta brahmagupta , c.598c.660, Indian mathematician and astronomer.
    http://www.highbeam.com/library/search.asp?FN=AO&refid=ency_refd&search_thesauru

    72. Recherche : Identité%20de%20Brahmagupta
    brahmagupta , Certification IDDN. Dansles fiches. 5 fiches trouvées.
    http://publimath.irem.univ-mrs.fr/cgi-bin/publimath.pl?r=identité de Brahmagupt

    73. Recherche : Brahmagupta
    Translate this page Accueil Publimath Requête brahmagupta, Certification IDDN. Dans les fiches.5 fiches trouvées. 1, 2001 Fractale.
    http://publimath.irem.univ-mrs.fr/cgi-bin/publimath.pl?r=Brahmagupta&t=n

    74. Brahmagupta
    Article on brahmagupta from WorldHistory.com, licensed from Wikipedia, the freeencyclopedia. Return to World History (home) Main Article Index brahmagupta.
    http://www.worldhistory.com/wiki/B/Brahmagupta.htm
    World History (home) Encyclopedia Index Localities Companies Surnames ... This Week in History
    Brahmagupta
    Brahmagupta ) was an Indian mathematician and astronomer . He was the head of the astronomical observatory at Ujjain, and during his tenure there wrote two texts on mathematics and astronomy: the Brahmasphutasiddhanta in , and the Khandakhadyaka in The Brahmasphutasiddhanta is the earliest known text other than the Mayan number system to treat zero as a number in its own right. It goes well beyond that, however, stating rules for arithmetic on negative number s and zero which are quite close to the modern understanding. The major divergence is that Brahmagupta attempted to define division by zero , which is left undefined in modern mathematics. His definition is not terribly useful; for instance, he states that 0/0 = 0, which would be a handicap to discussion of removable singularities in calculus
    See also
    External links

    Sponsored Links
    Advertisements DVD New Releases
    at Barnes and Noble

    12 CDs for 1

    at BMG Music Service
    ...
    to Ancestry.com!

    75. Brahmagupta's Formula
    Article on brahmagupta s formula from WorldHistory.com, licensed fromWikipedia, the free encyclopedia. Return Index brahmagupta s formula.
    http://www.worldhistory.com/wiki/B/Brahmagupta's-formula.htm
    World History (home) Encyclopedia Index Localities Companies Surnames ... This Week in History
    Brahmagupta's formula
    Brahmagupta's formula geometric formula to find the area of any quadrilateral
    Basic form
    In its basic and easiest to remember form, Brahmagupta's formula gives the area of a cyclic quadrilateral whose sides have lengths a b c d as: where s , the semiperimeter, is determined by
    Extension to Non-Cyclic Quadrilaterals
    In the case of non-cyclic quadrilaterals, Brahmagupta's formula can be extended by considering the measures of two opposite angles of the quadrilateral: where is half the sum of two opposite angles. (The pair is irrelevant: if the other two angles are taken, half their sum is the supplement of . Since , we have It is a property of cyclic quadrilaterals (and ultimately of inscribed angles ) that opposite angles of a quadrilateral sum to . Consequently, in the case of an inscribed quadrilateral, , whence the term , giving the basic form of Brahmagupta's formula.
    Related Theorems
    Heron's formula for the area of a triangle is the special case obtained by taking d The relationship between the general and extended form of Brahmagupta's formula is similar to how the Law of Cosines extends the Pythagorean Theorem
    External Link

    Sponsored Links
    Advertisements DVD New Releases
    at Barnes and Noble

    12 CDs for 1

    at BMG Music Service
    ...
    to Ancestry.com!

    76. Record Geometry/Brahmagupta
    Type PROBLEMS Key Geometry/brahmagupta. keywords, geometry theoremproving. problem, Let $ABCD$ be a cyclic quadrilateral. Determine
    http://www.symbolicdata.org/SD_HTML/Data/PROBLEMS/Geometry/Brahmagupta.html?sl

    77. Critical Study Of Brahmagupta And His Works, ( Satya Prakash
    ResearchMethodology. Science. Sociology. Sports. Yoga. Book Details. Critical StudyOf brahmagupta And His Works Satya Prakash Sarasvati Year of Publication 1986.
    http://www.dkpd.com/Critical Study Of Brahmagupta And His Works.htm

    78. ±Cù¼¯ÓD¦h¡]brahmagupta ¬ù598-¬ù665¡^
    The summary for this Chinese (Traditional) page contains characters that cannot be correctly displayed in this language/character set.
    http://www.edp.ust.hk/math/history/3/3_99.htm
    ±C¹¼¯ÓD¦h¡]Brahmagupta ¬ù598-¬ù665¡^ Nx ¡Óc=y

    79. Science, Civilization And Society
    brahmagupta. Indian astronomer, bc 598, dc 665. brahmagupta was the last greatastronomer of the early Indian tradition, which culminated in his work.
    http://www.es.flinders.edu.au/~mattom/science society/lectures/illustrations/lec

    80. Brahmagupta's Formula
    brahmagupta s Formula. For a Quadrilateral with sides of length ,, , and , the Area is given by. (1). where, (2). is the Semiperimeter
    http://icl.pku.edu.cn/yujs/MathWorld/math/b/b361.htm
    Brahmagupta's Formula
    For a Quadrilateral with sides of length , and , the Area is given by
    where
    is the Semiperimeter is the Angle between and , and is the Angle between and . For a Cyclic Quadrilateral (i.e., a Quadrilateral inscribed in a Circle , so
    where is the Radius of the Circumcircle . If the Quadrilateral is Inscribed in one Circle and Circumscribed on another, then the Area Formula simplifies to
    See also Bretschneider's Formula Heron's Formula
    References Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967. Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, pp. 81-82, 1929.
    Eric W. Weisstein

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 86    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter