Geometry.Net - the online learning center
Home  - Scientists - Bombelli Rafael
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Bombelli Rafael:     more detail

41. Title
domain (now Czech Republic) Died 18 Dec 1848 in Prague, Bohemia (now Czech Republic)bombelli, rafael bombelli Born Jan 1526 in Bologna, Italy Died 1573 in
http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=B

42. BNM: Proyectos
Translate this page BESSEL, WILHELM. BHASKARA. BIOT, JEAN BAPTISTE. BOLTZMANN, LUDWIG. BOLYAI, JANOS.bombelli, rafael. BOYLE, ROBERT. BRAHMAGUPTA. BRIGGS, HENRY. C. CACCIOPPOLI, RENATO.
http://www.bnm.me.gov.ar/s/proyectos/hea/exposiciones/matematicas/aei.php
Catálogos Proyectos Espacio pedagógico Redes ... Biblioteca, Museo y Archivo Dr. R. Levene Mapa del sitio Preguntas frecuentes Novedades Consultas y sugerencias Carta Compromiso con el Ciudadano Tecnología del sitio bbbbbbbbbbb bb La lista de los hombres de ciencia vinculados a las matemáticas y presentada a continuación no es exhaustiva. Usted puede acceder, a través de esta página, a las biografías de algunos de estos hombres como así también a artículos relacionados con sus obras (en español). Estas páginas a las que remitimos no son de autoría de la biblioteca. A menudo los vínculos no remiten a la posición exacta de la biografía o de la referencia dentro de la página, para ello deberá emplear la opción buscar que posea su navegador e indicar allí el nombre buscado. Seleccionar del abecedario...

43. Summary Cubics In The Math History
rafael bombelli (15261573) published in his book Algebra 1572 a way of calculatingwith complex numbers which made it possible to explain the case with
http://hem.passagen.se/ceem/summary.htm
Summary Cubics in the math history The earliest found information about computing cubic roots and solution of cubic
equations is found among the Babylonians (about 2000 - 400 BC). Hindu mathematicians took the Babylonian methods further so that Brahmagupta
(598-665 AD) gives an, almost modern, method which admits negative quantities.
Numerical values of cubic roots were computed by Aryabhata (476 -c. 550 BC) In about 300 BC Euclid developed a geometrical approach The solution of numerical higher equations for approximate values of roots has been
known for a long time in China . It has been called the most characteristic Chinese
mathematical contribution. The essentials of the method are there around
c. 100 BC - 50 CE. By using the method for finding the cube root of a number they
were able to solve a cubic equation of the form x + ax + bx = c , where a, b
and c are positive. The Arabs did not know about the advances the Hindus had made so they had neither
negative quantities nor abbreviations for their unknowns. However al'Khwarizmi
(c 800) gave a classification of different types of equations.

44. Re: The Number Line & Bombelli By Daniel J. Curtin
on e THE STORY OF A NUMBER that An important step toward their the negativenumbers ultimate acceptance was taken by rafael bombelli, who interpreted
http://mathforum.org/epigone/math-history-list/snermkhercrol/l03020900af8a4b28e9
reply to this message

post a message on a new topic

Back to messages on this topic
Back to math-history-list
Subject: Author: curtin@nku.edu Date: http://www.nku.edu/~curtin/, The Math Forum

45. Re: Negative Numbers By Art Mabbott
THE STORY OF A NUMBER that An important step toward their the negative numbersultimate acceptance was taken by rafael bombelli, who interpreted
http://mathforum.org/epigone/math-history-list/whetwalkhix/Pine.HPP.3.91.9704301
Re: Negative numbers by Art Mabbott
reply to this message
post a message on a new topic

Back to messages on this topic
Back to math-history-list
Subject: Re: Negative numbers Author: mabbotta@belnet.bellevue.k12.wa.us Date: http://belnet.bellevue.k12.wa.us/~mabbotta The Math Forum

46. Ufficio Scolastico Regionale Emilia-Romagna - MatematicaInsieme - Chiedi Al Prof
Translate this page Per risolvere il cosiddetto “caso irriducibile”, ovvero per ottenere le radicireali dell’equazione, rafael bombelli nell’opera dal titolo Algebra
http://www.matematicainsieme.it/math/
RUBRICHE Chiedi al
prof. Math. Fardiconto EVENTI Mostra itinerante Segnalazioni In libreria FORMAZIONE
E DIDATTICA Pacchetti
formativi
Percorsi
didattici
NOTIZIE DALLE UNIVERSITA' Bologna Parma Ferrara Modena ... Chiedi al prof. Math
Kandinsky Chi è il prof. Math Archivio: Dividere per zero Numeri pari e dispar i
Frazioni decimali
Rappresentare le frazion i
Vorrei sapere se è possibile rappresentare i 4/5 di 20 utilizzando i diagrammi di Eulero Venn.
insegnante elementare I diagrammi di Eulero-Venn sono usati per rappresentare graficamente degli insiemi, la loro intersezione, la loro unione e altre operazioni fra di essi.
Non mi sembrano quindi uno strumento adatto a rappresentare le frazioni; naturalmente varie rappresentazioni grafiche delle frazioni sono possibili, ma non tanto con diagrammi di Eulero-Venn (una spiegazione dell'uso di tali diagrammi si trova, ad esempio in http://digilander.libero.it/apuscio/insiemistica/Venn.htm

47. Math Talk Issue 3
A man by the name of rafael bombelli took the bold step in recognizing imaginarynumbers as a necessary vehicle that would transport the mathematician from
http://www.mssm.org/math/vol3/issue1/cplx.htm
Complex Numbers Aileen Trowbridge A complex, or imaginary, number is a number that is written in the form of a + bi , where a and b are real numbers and i is equal to . Complex numbers first appeared in the study of polynomial equations and their solutions. For example, the equation x has the solution x equals the square root of . However, in terms of real numbers, there is no solution for the equation x ; the new number is written as i equals the square root of A man by the name of Rafael Bombelli took the bold step in recognizing imaginary numbers as a necessary vehicle that would transport the mathematician from real cubic equations to its real solutions. Bombelli tried to solve the equation x ; he used a technique that gave him the equation x = (2 + (-121) , and discovered that The original equation included the square root of . Since it is known that the square root of is i , I have chosen to use i. = (2 + i) = (4 + 4i + i ) (2 + i) + i = 8 + 12i -4 -2 - i From this it can be seen that the expression ( is equal to (2 + i) . Then, by reexamining the cubic

48. Rafael Mira - Risultati
Translate this page NUC 64 0604693 Front. BB. XII. 30 bombelli Raffaele L`algebra opera di rafaelbombelli da Bologna diuisa in tre libri. con la quale ciascuno da
http://www.zuccaweb.it/_ricerca.asp?Keywords=rafael%20mira&j=63&rpp=9

49. Complex Roots Of Polynomials
The Influence of Practical Arithmetics on the Algebra of rafael bombelli (in Documents Translations) SA Jayawardene; Di rafael bombelli Isis, Vol. 64, No.
http://math.fullerton.edu/mathews/c2003/PolyRootComplexBib/Links/PolyRootComplex
Bibliography for C omplex Roots of Polynomials short
  • The simultaneous approximation of polynomial roots.
    Niell, A. M.
    Comput. Math. Appl. 41 (2001), no. 1-2, 114, MathSciNet. A graphical approach to understanding the fundamental theorem of algebra
    Sudhir Kumar Goel, Denise T. Reid.
    Mathematics Teacher Dec 2001 v94 i9 p749(1), Expanded Academic. Fundamental theorem of albegra - yet another proof
    Anindya Sen
    The American Mathematical Monthly Nov 2000 v107 i9 p842(2), Expanded Academic. Algebraic geometry and computer vision: Polynomial systems, real and complex roots
    Petitjean, S.
    Journal of Mathematical Imaging and Vision, v 10, n 3, 1999, p 191-220, Engineering Village. The Newton and Halley methods for complex roots
    Yau, Lily; Ben-Israel, Adi
    Amer. Math. Monthly 105 (1998), no. 9, 806818, MathSciNet. The Fundamental Theorem of Algebra Michael D. Hirschhorn College Math Journal: Volume 29, Number 4, (1998), Pages: 276-277. Bounding the Roots of Polynomials (in Classroom Capsules) Holly P. Hirst; Wade T. Macey
  • 50. Mathematics : Fermat Enigma Simon Singh
    How , assumes early bafflement and were l algebra. Mazur reading poetry, bothin for the rafael bombelli, be shipped to the the imaginative his great than
    http://www.eboomersworld.com/etc/MSIDN/fermat.enigma.simon.singh.dprdf2.11446.as
    Accessories Airline Artistic Services Audio ... Mathematics > Fermat Enigma Simon Singh
    Fermat Enigma Simon Singh
    Fermat Enigma Simon Singh Rat Patrol Simon Simon Airwolf Muncle Zine Simon Says George Simon Swing Era Guide Simon Simon Raney ...
    Weather
    The Mathmen EB3
    6 via eb3 item page 1 be a new 1964 s the mathmen leon terry fixed h will details: by published in
    Aristotelian-Thomistic Philosophy~Crowley~NEW
    Mathamazement by Ronn Yablun (1996)
    Imagining Numbers by Mazur (2003) NEW
    The Music of the Primes by Du Sauto NEW
    SPORTSMATHS J. M. JODEY 1967 The GOLDEN RATIO by Mario Livio HC/DJ Fermat's Enigma by Simon Singh (1997)
    Accessories
    Airline Artistic Services Audio ... Wholesale, Bulk Lots

    51. Information On Fractions
    Two men from the city of Bologna, Italy, rafael bombelli (b. c.1530) and PietroCataldi (15481626) also contributed to this field, albeit providing more
    http://www.groton.k12.ct.us/WWW/fsr/student/fall01/Historyinfo.html
    History of fractions
    To do mathematics, that is, in order to understand and to make contributions to this discipline, it is necessary to study its history. Mathematics is constantly building upon past discoveries. Those who wish to study a particular field of mathematics, whether it be statistics, abstract algebra, or continued fractions, will first need to study their field's past. In doing so, one is able to build upon past accomplishments rather than repeating them. The origin of continued fractions is hard to pinpoint. This is due to the fact that we can find examples of these fractions throughout mathematics in the last 2000 years, but its true foundations were not laid until the late 1600's, early 1700's. The origin of continued fractions is traditionally placed at the time of the creation of Euclid's Algorithm.[6] Euclid's Algorithm, however, is used to find the greatest common denominator (gcd) of two numbers. However, by algebraically manipulating the algorithm, one can derive the simple continued fraction of the rational p/q as opposed to the gcd of p and q. (To see this, check out Theorem 1.) It is doubtful whether Euclid or his predecessors actually used this algorithm in such a manner. But due to its close relationship to continued fraction, the creation of Euclid's Algorithm signifies the initial development of continued fractions. For more than a thousand years, any work that used continued fractions was restricted to specific examples. The Indian mathematician Aryabhata (d. 550 AD) used a continued fraction to solve a linear indeterminate equation.[6] Rather than generalizing this method, his use of continued fractions is used solely in specific examples.

    52. ITIS ETTORE MOLINARI MILANO 2000
    dell unità immaginaria dovuta a rafael bombelli (Archiginnasio di
    http://www.itis-molinari.mi.it/documents/franceschini/titolo.htm
    Esperienza didattica sulla risoluzione dell'equazione di 3° grado
    Formula di Cardano
    Risoluzione del caso irriducibile tramite l'inserimento dell'unità immaginaria dovuta a Rafael Bombelli
    (Archiginnasio di Bologna 1550-1572) Tavola dei contenuti: Piccolo vocabolario e bibliografia minima
    Dalla soluzione geometrica di Omar Khayyàm

    Due motivi classici sull'equazione di 3°grado

    Risoluzione dell'equazione algebrica di 3°grado
    ...
    Rafael Bombelli
    Realizzato dalla Commissione Cultura
    referente Prof. Franco Franceschini

    53. LE EQUAZIONI DI TERZO GRADO
    Translate this page Questo problema stimolò, negli anni successivi, numerose ricerche in campo algebricoche portarono con rafael bombelli all’introduzione dei numeri immaginari
    http://www.mbservice.it/scuola/tartaglia/le_equazioni_di_terzo_grado.htm
    LE EQUAZIONI DI TERZO GRADO La risoluzione delle equazioni di terzo grado aveva appassionato i matematici di tutti i tempi, poichè era frequente imbattersi in problemi di grado superiore al secondo. Per quanto riguarda la soluzione algebrica delle equazioni cubiche, visti gli insuccessi, gli algebristi concludevano che il caso era impossibile oppure procedevano per tentativi. che gli era stata proposta da un astronomo di Federico II. Fibonacci pervenne al sorprendente valore approssimato x =1,3688081. Nel 1500 cominciarono a circolare voci sui progressi della matematica in campo algebrico, tanto è vero che nel 1530 Zuanne de Tonini da Coi inviò a Tartaglia due problemi che si risolvevano con equazioni di 3° grado. Assai polemica fu la lettera di Tartaglia in risposta a Zuanne, riportata nel Quesito XIII : "… et dico che vi dovreste alquanto arossire, a proponere da rissolvere ad altri, quello che voi medesimo non sapeti rissolvere…". ".. conducevano l’operatore in el capitolo de cosa e cubo equal a numero…"
    Tartaglia mise la sua invenzione in versi , non sempre molto chiari, per paura che altri potessero pubblicare la sua scoperta.

    54. Philosophical Themes From CSL:
    Some of these difficulties were later ameliorated by rafael bombelli (152672)whose Algebra (1572) included the first discussion of what we now call
    http://myweb.tiscali.co.uk/cslphilos/algebra.htm
    Algebra and Geometry in the Sixteenth and Seventeenth Centuries Home Online Articles Links ... Recommend a Friend
    Introduction
    After outlining the state of algebra and geometry at the beginning of the sixteenth century, we move to discuss the advances in these fields between 1500 and 1640. A separate section is devoted to the development and use of algebraic geometry by Descartes, Fermat and Newton. We close with an attempt to assess the relative importance of these developments.
    State of the Arts: Chuquet and Pacioli
    At the beginning of the sixteenth century, mathematics was dominated by its Greek heritage and therefore by the study of geometry. But algebra was not wholly absent, and significant advances in notation had been made towards the end of the fifteenth century. Two works were particularly important in this regard: Nicolas Chuquet’s (c.1440-c.1488) Triparty (1484) and Luca Pacioli’s (c.1445-1517) Summa (1494). Pacioli’s symbolism was limited, consisting mostly of abbreviations. Although Chuquet’s symbolism was more advanced, the influence of this work was limited by its very small circulation: it was not properly published until 1880.
    Algebraic Advances: Cardano, Bombelli, Viète and Harriot

    55. Fachlehrplan Für Mathematik: Jahrgangsstufe 11; Lehrplan Für Das Bayerische Gy
    Translate this page Geronimo Cardano (1501 - 1576) rafael bombelli (1526 - 1572) rafaelbombelli (1707 - 1783) Carl Friedrich Gauß (1777 - 1855). -,
    http://uploader.wuerzburg.de/lehrplan/M-11.html
    Jahrgangsstufe 11
    (3, MNG 5)
    Infinitesimalrechnung
    (ca. 84 Std.)
    1 Reelle Funktionen
    (ca. 11 Std.)
    reelle Funktionen; Eigenschaften
    Grundbegriffe:
    Definitionsmenge, Zuordnungsvorschrift, Wertemenge, Funktionsterm, Funktionsgleichung, Funktionsgraph;
    weitere Begriffe:
    Symmetrie des Funktionsgraphen, Monotonie, Extremum, Nullstelle;
    Ph: Zeit-Ort-Funktionen)
    WR: z. B. Kostenfunktionen)
    Gottfried Wilhelm Leibniz

    Johann Bernoulli

    Umkehrbarkeit einer Funktion, Umkehrfunktion Umkehrbarkeit streng monotoner Funktionen; Zusammenhang zwischen den Graphen von Funktion und Umkehrfunktion; Bestimmen des Terms der Umkehrfunktion Summe, Differenz, Produkt, Quotient und Verkettung
    2 Grenzwert und Stetigkeit
    (ca. 16 Std.) DS). Grenzwertbegriff; Konvergenz, bestimmte und unbestimmte Divergenz Schreibweisen wie Ph11: mittlere Geschwindigkeit, Momentangeschwindigkeit) W: Unendlichkeit) Stetigkeit einer Funktion an einer Stelle der Definitionsmenge; Stetigkeit in einem Intervall Stetigkeitsuntersuchungen bei intervallweise definierten Funktionen Ph: Supraleitung, Kippschwingungen)

    56. Untitled
    However, from this example rafael bombelli s (ca. 15261573) made thefirst step toward complex numbers. bombelli s rafael bombelli. Born
    http://www.math.tamu.edu/~don.allen/history/renaissc/renassc.html
    Next: About this document
    April 2, 1997 Algebra in the Renaissance The general cultural movement of the renaissance in Europe had a profound impact also on the mathematics of the time. Italy was especially impacted. The Italian merchants of the time travelled widely throughout the East, bringing goods back in hopes of making a profit. They needed little by way of mathematics. Only the elementary needs of finance were required.
    • determination of costs
    • determination of revenues
    After the crusades, the commercial revolution changed this system. New technologies in ship building and saftey on the seas allows the single merchant to become a shipping magnate. These sedentary merchants could remain at home and hire others to make the journeys. This allowed and required them to make deals, and finance capital, arrange letters of credit, create bills of exchange, and make interest calculations. Double-entry bookkeeping began as a way of tracking the continuous flow of goods and money. The economy of barter was slowly replaced by the economy of money we have today. Needing more mathematics, they inspired the emergence of a new class of mathematician called

    57. MATEMÁTICOS Y MATEMÁTICAS EN EL MUNDO GRIEGO
    Translate this page A raíz de la polémica entre Cardano y Tartaglia, rafael bombelli, el último delos algebristas italianos del Renacimiento quien había leido el Ars Magna de
    http://euler.us.es/~libros/aritmetica.html
    De Euclides a Newton: Los genios a traves de sus libros
    principal
    griegos iberia
    De consolatione philosophiae Opera n(n+1)/2 3n(n-1)/2
    rithmetica integra rithmetica integra Practica Arithmeticae Ars Magna x Ars Magna
    -debemos destacar que el Ars Magna de Cardano estaba escrito de manera muy poco clara-. Su obra L'Algebra L'Algebra idea loca
    Canonem mathematicum

    principal
    griegos iberia Renato Alvarez Nodarse ...
    ran
    @us.es

    58. So Biografias Britanicos Em B
    Translate this page Agnes Gonxha Boleyn, Anne Boleyn, a Ana Bolena Bolívar, Simón Boltzmann, LudwigBolyai, János Johann Bolzano, Bernard bombelli, rafael Bonaparte, Charles
    http://www.sobiografias.hpg.ig.com.br/LetraBB.htm

    Baade, Wilhelm Heinrich Walter

    Babbage, Charles

    Babbitt, Isaac

    Babcock, Stephen Moulton
    ...
    Bentley, Wilson Alwyn

    Papas Bento [ ou Benedito] I II XIV e XV
    Bento, Anselmo Duarte

    Benz, Karl Friedrich

    Berdiaeff, Nikolai Aleksandrovitch
    ...
    Bonesana, Cesare
    Papas I IV e VIII Bonnet, Charles Bonneville, Benjamin-Louis-Eulalie de ou ... George Gordon Noel

    59. Golden Ratio Influential Architect
    Church To see the Golden Ratio geometry of the painting Salaman bombelli Biography of rafael bombelli (15261572) He
    http://www.money-room.com/day-trading-stocks/73/golden-ratio-influential-archite
    golden ratio influential architect
    Here's our hand-selected "Best Of Class" resource about golden ratio influential architect
    "Top Trader Reveals Amazing Trading Breakthrough That's Exploding The Profit Potential Of Traders Worldwide!"

    "Have you ever wanted to trade stocks like a pro? Do you want to learn how to flip stocks for quick profit so you can afford the things that you want to buy for you and your family? Learn how to beat the day trading system! Discover how trading stocks for a living can give you the life you have always wanted!"
    Day Trading Stocks
    golden ratio influential architect
    Visit This Site For More Information About Our Top golden ratio influential architect Resource
    More Resources
    The golden ratio and aesthetics

    Ratio ... In the Elements, the most influential mathematics textbook ever written, Euclid of ... appearances of the Golden Ratio in the arts. The famous Swiss-French architect and painter Le ...
    A MUSEUM DEDICATED TO THE CONCEPT OF HARMONY AND THE GOLDEN SECTION

    ... The well-known Italian architect Leone Battista Alberti spoke ... property of the

    60. Untitled Document
    Translate this page rafael bombelli, trinta anos depois, volta à dúvida de Cardano ea discute emtermos de raízes de equações, para as quais criou uma notação própria.
    http://www.prandiano.com.br/html/m_livro.htm
    ARQUEOLOGIA MATEMÁTICA
    A origem da Matemática nas civilizações antigas
    Arqueologia Matemática As origens da Matemática nas civilizações antigas
    é um livro que mostra e discute a arte de calcular na antigüidade e, o mais importante, como os antigos a aplicavam e em que áreas do conhecimento humano. ASSIM NASCEU O IMAGINÁRIO Origens dos Números Complexos
    Raiz quadrada de um número negativo? Cardano não poderia imaginar em 1542 o avanço matemático que sua dúvida produziria, pois seus colegas de ofício argumentaram ser pura ingenuidade questionar ( ). Sufocado pelas críticas e problemas familiares - um de seus filhos foi enforcado -, Cardano abandona a Matemática e passa a dedicar-se à Medicina. Rafael Bombelli, trinta anos depois, volta à dúvida de Cardano e a discute em termos de raízes de equações, para as quais criou uma notação própria. Apesar desse estudo de Bombelli não ter elucidado o conceito de raiz quadrada de um número negativo, influenciaria, e muito, René Descartes, que, em 1637, convocaria os filósofos europeus para desenvolverem tal assunto que chamou de Étude Imaginaire (Estudo Imaginário). Leibniz não concordou com esse nome por achá-lo inexpressivo, e em 1702 propôs

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter