Home  - Basic_P - Polynomial Division
e99.com Bookstore
 Images Newsgroups
 21-40 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20
 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

 Polynomial Division:     more books (39)

lists with details

1. Learn.co.uk - Learning Resources For The National Curriculum, Online Lessons, GC
factors. Polynomials. polynomial division. The remainder theorem. Thefactor theorem. polynomial division, The Euclidean property. If
http://www.learn.co.uk/default.asp?WCI=Unit&WCU=27255

2. Polynomial Division
First Previous Next Last Index Home Text. Slide 18 of 26.
http://www.cs.berkeley.edu/~kfall/EE122/lec06/sld018.htm

3. Polynomial Division
polynomial division. 10011010000. 1101. 1. 1101. 1001. 1101.1. 1000. 1101. 1011. 1101. 1. 1. 1. 0. 0. 1. 1100. 1101.1000. 1101. 101.
http://www.cs.berkeley.edu/~kfall/EE122/lec06/tsld018.htm

4. Pdiv: ----- Polynomial Division
2.7.24 pdiv polynomial division. Elementwise euclidan division of thepolynomial matrix P1 by the polynomial P2 or by the polynomial matrix P2.
http://scilabsoft.inria.fr/doc/manual/Docu-html775.html

Extractions: [R,Q]=pdiv(P1,P2) [Q]=pdiv(P1,P2) Element-wise euclidan division of the polynomial matrix by the polynomial or by the polynomial matrix Rij is the matrix of remainders, Qij is the matrix of quotients and P1ij = Qij*P2 + Qij or P1ij = Qij*P2ij + Qij x=poly(0,'x'); p1=(1+x^2)*(1-x);p2=1-x; [r,q]=pdiv(p1,p2) p2*q-p1 p2=1+x; [r,q]=pdiv(p1,p2) p2*q+r-p1 ldiv gcd

5. Detailed Information For Polynomial Division Program
Simple programto divide polynomials. Authors Eliel Louzoun Mikael Sundstrom.polynomial division Program. Filename polydiv.zip.
http://www.hpcalc.org/details.php?id=357

6. Polynomial Division By Ewen Miller
polynomial division by Ewen Miller. reply to this message post a messageon a new topic Back to sci.math.symbolic Subject Polynomial
http://mathforum.org/epigone/sci.math.symbolic/bruzaxjand

7. Polynomial Division
a topic from sci.math.numanalysis polynomial division. post a messageon this topic post a message on a new topic 14 Jun 2000 Polynomial
http://mathforum.org/epigone/sci.math.num-analysis/khangwhikhou

8. Improved Parallel Polynomial Division And Its Extensions - Bini
Improved Parallel polynomial division and Its Extensions (1992) (MakeCorrections) (1 citation) Dario Bini Victor Pan September 1992.
http://citeseer.ist.psu.edu/bini92improved.html

9. Citations Improved Parallel Polynomial Division And Its
D. Bini and V. Pan. Improved parallel polynomial division and its extensions.Proc. Improved parallel polynomial division and its extensions. Proc.
http://citeseer.ist.psu.edu/context/160380/341874

10. Long Polynomial Division
6x 2 + x 9 2x - 1. Set up the long division. 3x =, 6x 2 2x, . Notes. 6x 2 + x- 9 = (2x - 1)(3x + 2) - 7. Dividend, 6x 2 + x - 9. Divisor, 2x - 1. Quotient,3x + 2.
http://www.sci.wsu.edu/~kentler/Fall97_101/Chapter5/lpd_2.html

11. Long Polynomial Division
x 2 3. Set up the long division. Notice the 0 s put in as place holders for missingpowers of x. x 2 =, x 4 x 2, . Dividend, x 4 - 2x 3 + 8x - 14. Divisor, x 2 - 3.
http://www.sci.wsu.edu/~kentler/Fall97_101/Chapter5/lpd_3.html

12. Polynomial Division 1
?( ?) ( polynomial division Version 1 ). ?( ?) ( polynomial division Version 2 ).
http://lpl.hkcampus.net/~lpl-wwk/Casio50/Polynomial Division 1.htm

Extractions: ¦h¶µ¦¡°£ªk ( ²Ä¤@ª© ) ( Polynomial Division : Version 1 ) ¡A³Ì«á§ó·s¤é´Á 14 AUG 2003 ¡C) ( Quartic Polynomial ) ³Q¤@­Ó¤@¦¸¦h¶µ¦¡ ( Linear Polynomial ) °£©Ò±oªº°Ó¦¡ ( Quotient ) ¤Î¾l¼Æ ( Remainder ) ¡C 75 bytes ? ¡÷ A : ? ¡÷ B : ? ¡÷ C : ? ¡÷ D : ? ¡÷ X : ? ¡÷ Y : ? ¡÷ M : -M Y ¡÷ M : A Y ¡÷ A B Y + AM ¡÷ B C Y + BM ¡÷ C D Y + CM ¡÷ D X + DMY ¡÷ X MODE MODE MODE 2 ¨Ò¡G­pºâ ªº°Ó¦¡¤Î¾l¼Æ¡C ¥ç§Y¬O»¡°Ó¦¡¬O x + x ¡A¾l¼Æ¬O ¡C RCL A ¡B RCL B ¡B RCL C RCL D RCL X ¦pªG³Q°£¦¡¬O¤T¦¸©Î§ó§C¦¸ªº¦h¶µ¦¡¡A¥u»Ý±N¬ÛÀ³ªº«Y¼Æ¿é¤J §Y¥i¡C ¦h¶µ¦¡­¼ªk ( ²Ä¤@ª© ) ( Polynomial Multiplication : Version 1 ) ¦h¶µ¦¡­¼ªk ( ²Ä¤Gª© ) ( Polynomial Multiplication : Version 2 ) ¦h¶µ¦¡°£ªk ( ²Ä¤Gª© ) ( Polynomial Division : Version 2 ) ¦h¶µ¦¡°£ªk ( ²Ä¤Tª© ) ( Polynomial Division : Version 3 )

13. Polynomial Division 3
?( ?) ( polynomial division Version 3 ). ?( ?) ( polynomial division Version 1 ).
http://lpl.hkcampus.net/~lpl-wwk/Casio50/Polynomial Division 3.htm

Extractions: ¦h¶µ¦¡°£ªk ( ²Ä¤Tª© ) ( Polynomial Division : Version 3 ) ¡A³Ì«á§ó·s¤é´Á 14 MAR 2004 ¡C) ( Polynomial ) ³Q¤@­Ó¤@¦¸¦h¶µ¦¡ ( Linear Polynomial ) °£©Ò±oªº°Ó¦¡ ( Quotient ) ¤Î¾l¼Æ ( Remainder ) ¡C 48 bytes Mem clear : ? ¡÷ A : ? ¡÷ B : ? ¡÷ D : Lbl 1 : ? ¡÷ X : X ¡V BC A ¡÷ C : C MODE MODE MODE 2 ¨Ò¡G­pºâ ªº°Ó¦¡¤Î¾l¼Æ¡C ¦A«ö 6 EXE ( ³Q°£¦¡ªº³Ì«á¤@­Ó«Y¼Æ¡A±`¼Æ¶µ )¡AÅã¥Ü ( ¾l¼Æ ) ¥ç§Y¬O»¡°Ó¦¡¬O x + x ¡A¾l¼Æ¬O ¡C ¦h¶µ¦¡­¼ªk ( ²Ä¤@ª© ) ( Polynomial Multiplication : Version 1 ) ¦h¶µ¦¡­¼ªk ( ²Ä¤Gª© ) ( Polynomial Multiplication : Version 2 ) ¦h¶µ¦¡°£ªk ( ²Ä¤@ª© ) ( Polynomial Division : Version 1 ) ¦h¶µ¦¡°£ªk ( ²Ä¤Gª© ) ( Polynomial Division : Version 2 )

14. Polynomial Division And Zeros Of A Polynomial
polynomial division and Zeros of a Polynomial. Lecture Notesprovided by Sharon Walker last update 6/23/99 sw.
http://fym.la.asu.edu/~fym/mat117_online/lessons/ch4/4_4/poly_division_zeros.htm

15. Module 1 -- Polynomial Division
Instructional Unit Polynomial and Rational Functions. DayOne. by. Behnaz Rouhani. Return to Behnaz Rouhani s Page
http://jwilson.coe.uga.edu/EMT668/EMAT6680.2002/Rouhani/IU/module1.html

16. Left Or Right Polynomial Division
Left or right polynomial division. The operator nc_divide computesthe one sided quotient and remainder of two polynomials nc_divide
http://www.uni-koeln.de/REDUCE/ncpoly/section3_5.html

Extractions: Next: Left or right polynomial reduction Up: NCPOLY: Computation in non-commutative polynomial ideals Previous: The operator computes the one sided quotient and remainder of two polynomials: The result is a list with quotient and remainder. The division is performed as a pseudo-division, multiplying by coefficients if necessary. The result is defined by the relation for direction and for direction where is an expression that does not contain any of the ideal variables, and the leading term of is lower than the leading term of according to the actual term order.

17. 5 Left Or Right Polynomial Division
5 Left or right polynomial division. The operator nc_divide computesthe one sided quotient and remainder of two polynomials nc_divide
http://www.uni-koeln.de/REDUCE/3.6/doc/ncpoly/node5.html

Extractions: Next: 6 Left or right polynomial reduction Up: NCPOLY: Computation in noncommutative polynomial ideals Previous: Top: REDUCE Online Documentation The operator computes the one sided quotient and remainder of two polynomials: The result is a list with quotient and remainder. The division is performed as a pseudodivision, multiplying by coefficients if necessary. The result is defined by the relation for direction left and for direction right where is an expression that does not contain any of the ideal variables, and the leading term of is lower than the leading term of according to the actual term order.

18. CenterSpace API Documentation - Polynomial Division Operator
NMath Core Reference Guide, Version 2.1. polynomial division Operator.Divides a polynomial by a scalar. public static Polynomial operator
http://www.centerspace.net/doc/NMath/Core/ref/CenterSpace.NMath.Core.Polynomial.

19. Real Roots Of Polynomial Functions
Again, consider our basic definition of polynomial division Dividend f(x). Divisorh(x). This we will call the remainder theorem for polynomial division.
http://id.mind.net/~zona/mmts/functionInstitute/polynomialFunctions/roots/realRo

Extractions: Real Roots of Polynomial Functions Roots Polynomial Functions Function Institute Contents ... Home Definition of terms and symbols when dividing polynomials: Dividend: f(x) Divisor: h(x) Quotient: q(x) Remainder: r(x) If any of these are constants, for example if r(x) is constant, as in: r(x) = 5 or: r(x) = a then variable, rather than function, notation may be used for that value, as in: r = 5 or: r = a When f(x) is divided by h(x), the result is the value of q(x) plus r(x), as in: f(x)/h(x) = q(x) + r(x) This can also be written as: f(x) = h(x)q(x) + r(x) The remainder, r(x), will either be equal to 0, or it will be less in degree than the degree of the divisor, h(x). If h(x) has a degree of 1, then the degree of the remainder must be 0. That is, the remainder must be a constant, as in: r(x) = cx = c Under these conditions variable notation is fine, as in: r = c Therefore, if f(x) is divided by the linear polynomial (x - c), the remainder is a constant, r. Again, consider our basic definition of polynomial division: Dividend: f(x) Divisor: h(x) Quotient: q(x) Remainder: r(x) f(x) = h(x)q(x) + r(x) Make the divisor, h(x), equal to the zero degree polynomial (x - c). This will create a remainder, r, that is a constant.

20. Synthetic Division
with division? Consider dividing f(x) = 4x 3 3x 2 + x - 4 by (x- 2). Standard polynomial division would look like this 4x 2
http://id.mind.net/~zona/mmts/functionInstitute/polynomialFunctions/roots/synthe

Extractions: Synthetic Division Polynomial Functions Function Institute Contents Index ... Home Consider this polynomial function: f(x) = 4x + x - 4 Suppose that we evaluate it at an input of x = 2, like this: f(2) = 4(2 f(2) = 32 - 12 = 2 - 4 f(2) = 18 In this process we raised the input to a power, as in 2 Let us see that there is a way to evaluate this polynomial function using only multiplication and addition. Start with the original polynomial and factor out an x. So, this: + x - 4 Becomes: x(4x Factor out another x from the parenthesized expression: x(x(4x - 3) + 1) - 4 Now, imagine that you evaluate f(x) at x = 2. Begin with the inner most expression. Place a 2 for the input value of x, as in: x(x(4(2) - 3) + 1) - 4 Now you would multiply 2 (the input) by 4 (the original coefficient of x ) and then add -3 (the original coefficient of x ). This would evaluate to 5. The expression now looks like: x(x(5) + 1) - 4 Place a 2 for the next input value of x, as in: x(2(5) + 1) - 4 Now you would multiply 2 (the input) by 5 and then add 1 (the original coefficient of x). This would evaluate to 11. The expression now looks like: x(11) - 4 Place a 2 for the last input value of x, as in:

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
 21-40 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20